Previous |  Up |  Next

Article

Title: Expected utility maximization and conditional value-at-risk deviation-based Sharpe ratio in dynamic stochastic portfolio optimization (English)
Author: Kilianová, Soňa
Author: Ševčovič, Daniel
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 6
Year: 2018
Pages: 1167-1183
Summary lang: English
.
Category: math
.
Summary: In this paper we investigate the expected terminal utility maximization approach for a dynamic stochastic portfolio optimization problem. We solve it numerically by solving an evolutionary Hamilton-Jacobi-Bellman equation which is transformed by means of the Riccati transformation. We examine the dependence of the results on the shape of a chosen utility function in regard to the associated risk aversion level. We define the Conditional value-at-risk deviation ($CVaRD$) based Sharpe ratio for measuring risk-adjusted performance of a dynamic portfolio. We compute optimal strategies for a portfolio investment problem motivated by the German DAX 30 Index and we evaluate and analyze the dependence of the $CVaRD$-based Sharpe ratio on the utility function and the associated risk aversion level. (English)
Keyword: dynamic stochastic portfolio optimization
Keyword: Hamilton-Jacobi-Bellman equation
Keyword: Conditional value-at-risk
Keyword: $CVaRD$-based Sharpe ratio
MSC: 34E05
MSC: 35K55
MSC: 70H20
MSC: 90C15
MSC: 91B16
MSC: 91B70
idZBL: Zbl 07031767
idMR: MR3902627
DOI: 10.14736/kyb-2018-6-1167
.
Date available: 2019-02-18T14:47:34Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147603
.
Reference: [1] Abe, R., Ishimura, N.: Existence of solutions for the nonlinear partial differential equation arising in the optimal investment problem..Proc. Japan Acad. Ser. A 84 (2008), 1, 11-14. MR 2381178, 10.3792/pjaa.84.11
Reference: [2] Agarwal, V., Naik, N. Y.: Risk and portfolio decisions involving hedge funds..Rev. Financ. Stud. 17 (2004), 1, 63-98. 10.1093/rfs/hhg044
Reference: [3] Andrieu, L., Lara, M. De, Seck, B.: Conditional Value-at-Risk Constraint and Loss Aversion Utility Functions..https://arxiv.org/pdf/0906.3425.pdf
Reference: [4] Arrow, K. J.: Aspects of the theory of risk bearing..In: The Theory of Risk Aversion. Helsinki: Yrjo Jahnssonin Saatio. (Reprinted in: Essays in the Theory of Risk Bearing, Markham Publ. Co., Chicago, 1971), (1965), pp. 90-109. MR 0363427
Reference: [5] Aubin, J. P.: Lipschitz behavior of solutions to convex minimization problems..Math. Oper. Res. 9 (1984), 87-111. MR 0736641, 10.1287/moor.9.1.87
Reference: [6] Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K.: Non-linear Parametric Optimization. Licensed ed..Birkhauser Verlag, Basel-Boston, Mass., 1983. MR 0701243, 10.1007/978-3-0348-6328-5
Reference: [7] Bertsekas, D. P.: Dynamic Programming and Stochastic Control..Academic Press, New York 1976. MR 0688509, 10.1016/s0076-5392(08)x6050-3
Reference: [8] Biglova, A., Ortobelli, S., Rachev, S., Stoyanov, S.: Different Approaches to Risk Estimation in Portfolio Theory..J. Portfolio Management 31 (2004), 1, 103-112. 10.3905/jpm.2004.443328
Reference: [9] Browne, S.: Risk-constrained dynamic active portfolio management..Management Sci. 46 (2000), 9, 1188-1199. 10.1287/mnsc.46.9.1188.12233
Reference: [10] Denuit, M., Dhaene, J., Goovaerts, M., Kaas, R., Laeven, R.: Risk measurement with equivalent utility principles..Statist. Decisions 24 (2006), 1-25. MR 2323186, 10.1524/stnd.2006.24.1.1
Reference: [11] Farinelli, S., Ferreira, M., Rosselloc, D., Thoeny, M., Tibiletti, L.: Beyond Sharpe ratio: Optimal asset allocation using different performance ratios..J. Banking Finance 32 (2008), 10, 2057-2063. 10.1016/j.jbankfin.2007.12.026
Reference: [12] Huang, Y., Forsyth, P. A., Labahn, G.: Combined fixed point and policy iteration for Hamilton-Jacobi-Bellman equations in finance..SIAM J. Numer. Anal. 50 (2012), 4, 1861-1882. MR 3022201, 10.1137/100812641
Reference: [13] Ishimura, N., Koleva, M. N., Vulkov, L. G.: Numerical solution via transformation methods of nonlinear models in option pricing..AIP Conference Proceedings 1301 (2010), 1, 387-394. 10.1063/1.3526637
Reference: [14] Ishimura, N., Ševčovič, D.: On traveling wave solutions to a Hamilton-Jacobi-Bellman equation with inequality constraints..Japan J. Ind. Appl. Math. 30 (2013), 1, 51-67. MR 3022806, 10.1007/s13160-012-0087-8
Reference: [15] Karatzas, I., Lehoczky, J. P., Sethi, S. P., Shreve, S.: Explicit solution of a general consumption/investment problem..Math. Oper. Res. 11 (1986), 2, 261-294. MR 0844005, 10.1287/moor.11.2.261
Reference: [16] Kilianová, S., Ševčovič, D.: A transformation method for solving the Hamilton-Jacobi-Bellman equation for a constrained dynamic stochastic optimal allocation problem..ANZIAM J. 55 (2013), 14-38. MR 3144202, 10.21914/anziamj.v55i0.6816
Reference: [17] Kilianová, S., Trnovská, M.: Robust portfolio optimization via solution to the Hamilton-Jacobi-Bellman equation..Int. J. Comput. Math. 93 (2016), 725-734. MR 3483306, 10.1080/00207160.2013.871542
Reference: [18] Klatte, D.: On the {L}ipschitz behavior of optimal solutions in parametric problems of quadratic optimization and linear complementarity..Optim. J. Math. Program. Oper. Res. 16 (1985), 6, 819-831. MR 0814211, 10.1080/02331938508843080
Reference: [19] Koleva, M. N.: Iterative methods for solving nonlinear parabolic problem in pension saving management..AIP Confer. Proc. 1404 (2011), 1, 457-463. 10.1063/1.3659948
Reference: [20] Koleva, M. N., Vulkov, L.: Quasilinearization numerical scheme for fully nonlinear parabolic problems with applications in models of mathematical finance..Math. Comput. Modell. 57 (2013), 2564-2575. MR 3068748, 10.1016/j.mcm.2013.01.008
Reference: [21] Kútik, P., Mikula, K.: Finite volume schemes for solving nonlinear partial differential equations in financial mathematics..In: Finite Volumes for Complex Applications VI, Problems and Perspectives (J. Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, eds.), Springer Proc. Math. 4 (2011), pp. 643-651. MR 2882342, 10.1007/978-3-642-20671-9_68
Reference: [22] LeVeque, R. J.: Finite Volume Methods for Hyperbolic Problems..Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge 2002. MR 1925043, 10.1017/cbo9780511791253
Reference: [23] Lin, S., Ohnishi, M.: Optimal portfolio selection by CVaR based Sharpe ratio genetic algorithm approach..Sci. Math. Japon. Online e-2006 (2006), 1229-1251. MR 2300341
Reference: [24] Macová, Z., Ševčovič, D.: Weakly nonlinear analysis of the Hamilton-Jacobi-Bellman equation arising from pension savings management..Int. J. Numer. Anal. Model. 7 (2010), 4, 619-638. MR 2644295
Reference: [25] McNeil, A. J., Frey, R., Embrechts, P.: Quantitattive Risk Management..Princeton Series in Finance, Princeton University Press, 2005. MR 2175089, 10.1007/s11408-006-0016-4
Reference: [26] Merton, R. C.: Optimal consumption and portfolio rules in a continuous time model..J. Economic Theory 71 (1971), 373-413. MR 0456373, 10.1016/0022-0531(71)90038-x
Reference: [27] Milgrom, P., Segal, I.: Envelope theorems for arbitrary choice sets..Econometrica 70 (2002), 2, 583-601. MR 1913824, 10.1111/1468-0262.00296
Reference: [28] Musiela, M., Zariphopoulou, T.: An example of indifference prices under exponential preferences..Finance Stochast. 8 (2004), 2, 229-239. MR 2048829, 10.1007/s00780-003-0112-5
Reference: [29] Muthuraman, K., Kumar, S.: Multidimensional portfolio optimization with proportional transaction costs..Math. Finance 16 (2006), 2, 301-335. MR 2212268, 10.1111/j.1467-9965.2006.00273.x
Reference: [30] Pflug, G. Ch., Römisch, W.: Modeling, Measuring and Managing Risk..World Scientific Publushing, 2007. MR 2424523, 10.1142/6478
Reference: [31] Post, T., Fang, Y., Kopa, M.: Linear tests for DARA stochastic dominance..Management Sci. 61 (2015), 1615-1629. MR 0668272, 10.1287/mnsc.2014.1960
Reference: [32] Pratt, J. W.: Risk aversion in the small and in the large..Econometrica. 32 (1964), 1-2, 122-136. Zbl 0267.90010, 10.2307/1913738
Reference: [33] Protter, M. H., Weinberger, H. F.: Maximum Principles in Differential Equations..Springer-Verlag, New York 1984. MR 0762825, 10.1007/978-1-4612-5282-5
Reference: [34] Reisinger, C., Witte, J. H.: On the use of policy iteration as an easy way of pricing American options..SIAM J. Financ. Math. 3 (2012), 459-478. MR 2968042, 10.1137/110823328
Reference: [35] Seck, B., Andrieu, L., Lara, M. De: Parametric multi-attribute utility functions for optimal profit under risk constraints..Theory Decision. 72 (2012), 2, 257-271. MR 2878102, 10.1007/s11238-011-9255-6
Reference: [36] Sharpe, W. F.: The Sharpe ratio..J. Portfolio Management 21 (1994), 1, 49-58. 10.3905/jpm.1994.409501
Reference: [37] Ševčovič, D., Stehlíková, B., Mikula, K.: Analytical and Numerical Methods for Pricing Financial Derivatives..Nova Science Publishers, Inc., Hauppauge 2011.
Reference: [38] Tourin, A., Zariphopoulou, T.: Numerical schemes for investment models with singular transactions..Comput. Econ. 7 (1994), 4, 287-307. MR 1318095, 10.1007/bf01299457
Reference: [39] Vickson, R. G.: Stochastic dominance for decreasing absolute risk aversion..J. Financial Quantitative Analysis 10 (1975), 799-811. 10.2307/2330272
Reference: [40] Wiesinger, A.: Risk-Adjusted Performance Measurement State of the Art..Bachelor Thesis of the University of St. Gallen School of Business Administration, Economics, Law and Social Sciences (HSG), 2010.
Reference: [41] Xia, J.: Risk aversion and portfolio selection in a continuous-time model..J. Control Optim. 49 (2011), 5, 1916-1937. MR 2837505, 10.1137/10080871x
Reference: [42] Zariphopoulou, T.: Consumption-investment models with constraints..SIAM J. Control Optim. 32 (1994), 1, 59-85. MR 1255960, 10.1137/s0363012991218827
Reference: [43] Zheng, H.: Efficient frontier of utility and CVaR..Math. Meth. Oper. Res. 70 (2009), 1, 129-148. MR 2529428, 10.1007/s00186-008-0234-9
.

Files

Files Size Format View
Kybernetika_54-2018-6_6.pdf 706.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo