Previous |  Up |  Next

Article

Title: Multistage multivariate nested distance: An empirical analysis (English)
Author: Vitali, Sebastiano
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 6
Year: 2018
Pages: 1184-1200
Summary lang: English
.
Category: math
.
Summary: Multistage stochastic optimization requires the definition and the generation of a discrete stochastic tree that represents the evolution of the uncertain parameters in time and space. The dimension of the tree is the result of a trade-off between the adaptability to the original probability distribution and the computational tractability. Moreover, the discrete approximation of a continuous random variable is not unique. The concept of the best discrete approximation has been widely explored and many enhancements to adjust and fix a stochastic tree in order to represent as well as possible the real distribution have been proposed. Yet, often, the same generation algorithm can produce multiple trees to represent the random variable. Therefore, the recent literature investigates the concept of distance between trees which are candidate to be adopted as stochastic framework for the multistage model optimization. The contribution of this paper is to compute the nested distance between a large set of multistage and multivariate trees and, for a sample of basic financial problems, to empirically show the positive relation between the tree distance and the distance of the corresponding optimal solutions, and between the tree distance and the optimal objective values. Moreover, we compute a lower bound for the Lipschitz constant that bounds the optimal value distance. (English)
Keyword: multistage stochastic optimization
Keyword: nested distance
Keyword: portfolio models
MSC: 60B05
MSC: 62P05
MSC: 90C15
idZBL: Zbl 07031768
idMR: MR3902628
DOI: 10.14736/kyb-2018-6-1184
.
Date available: 2019-02-18T14:48:39Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147604
.
Reference: [1] Birge, J. R., Louveaux, F.: Introduction to Stochastic Programming..Springer Science and Business Media, 2011. MR 2807730
Reference: [2] Consigli, G., Moriggia, V., Benincasa, E., Landoni, G., Petronio, F., Vitali, S., Tria, M. di, Skoric, M., Uristani, A.: Optimal multistage defined-benefit pension fund management..In: Recent Advances in Commmodity and Financial Modeling: Quantitative methods in Banking, Finance, Insurance, Energy and Commodity markets (G. Consigli, S. Stefani, and G. Zambruno eds.), Springer's International Series in Operations Research and Management Science, 2017. MR 3702011, 10.1007/978-3-319-61320-8_13
Reference: [3] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance..Applied Optimization, Springer, 2002. MR 2008457, 10.1007/b101992
Reference: [4] Kilianová, S., Pflug, G. C.: Optimal pension fund management under multi-period risk minimization..Ann. Oper. Res. 166 (2009), 1, 261-270. MR 2471003, 10.1007/b101992
Reference: [5] Kopa, M., Petrová, B.: Multistage risk premiums in portfolio optimization..Kybernetika 53 (2017), 6, 992-1011. MR 3758931, 10.14736/kyb-2017-6-0992
Reference: [6] Kopa, M., Moriggia, V., Vitali, S.: Individual optimal pension allocation under stochastic dominance constraints..Ann. Oper. Res. 260 (2018), 1,2, 255-291. MR 3741562, 10.1007/s10479-016-2387-x
Reference: [7] Kovacevic, R. M., Pichler, A.: Tree approximation for discrete time stochastic processes: a process distance approach..Ann. Oper. Res. 235 (2015), 1, 395-421. MR 3428599, 10.1007/s10479-015-1994-2
Reference: [8] Maggioni, F., Pflug, G. C.: Bounds and approximations for multistage stochastic programs..SIAM J. Optim. 26 (2016), 1, 831-855. MR 3477324, 10.1137/140971889
Reference: [9] Maggioni, F., Allevi, E., Bertocchi, M.: Bounds in multistage linear stochastic programming..J. Optim. Theory Appl. 163 (2014), 1, 200-229. MR 3260982, 10.1007/s10957-013-0450-1
Reference: [10] Maggioni, F., Allevi, E., Bertocchi, M.: Monotonic bounds in multistage mixed-integer liner stochastic programming..Comput. Management Sci. 13 (2016), 3, 423-457. MR 3514994, 10.1007/s10287-016-0254-5
Reference: [11] Pflug, G. C., Pichler, A.: A distance for multistage stochastic optimization models..SIAM J. Optim. 22 (2012), 1, 1-23. 10.1137/110825054
Reference: [12] Pflug, G. C., Pichler, A.: Multistage Stochastic Optimization..Springer, 2014. 10.1007/978-3-319-08843-3
Reference: [13] Pflug, G. C., Pichler, A.: Convergence of the smoothed empirical process in nested distance..Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut fűr Mathematik (J. L. Higle, W. Römisch, and S. Surrajeet, eds.), 2015.
Reference: [14] Pflug, G. C., Pichler, A.: From empirical observations to tree models for stochastic optimization: Convergence properties..SIAM J. Optim. 26 (2016), 3, 1715-1740. MR 3543169, 10.1137/15m1043376
Reference: [15] Powell, W. B.: Clearing the jungle of stochastic optimization..Informs TutORials, 2014. 10.1287/educ.2014.0128
Reference: [16] Rockafellar, T. R., Uryasev, S.: Optimization of conditional value-at-risk..J. Risk 2 (2000), 21-42. 10.21314/jor.2000.038
Reference: [17] Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programing. Modeling and Theory..SIAM Math. Programm. Soc. 2009. MR 3242164
Reference: [18] Timonina, A. V.: Multi-stage stochastic optimization: the distance between stochastic scenario processes..Computat. Management Sci. 12 (2015), 1, 171-195. MR 3296230, 10.1007/s10287-013-0185-3
Reference: [19] Vitali, S., Moriggia, V., Kopa, M.: Optimal pension fund composition for an Italian private pension plan sponsor..Comput. Management Sci. 14 (2017), 1, 135-160. MR 3599603, 10.1007/s10287-016-0263-4
.

Files

Files Size Format View
Kybernetika_54-2018-6_7.pdf 3.437Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo