Previous |  Up |  Next

Article

Title: The multiplier for the weak McShane integral (English)
Author: Sayyad, Redouane
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 1
Year: 2019
Pages: 13-24
Summary lang: English
.
Category: math
.
Summary: The multiplier for the weak McShane integral which has been introduced by M. Saadoune and R. Sayyad (2014) is characterized. (English)
Keyword: McShane integral
Keyword: weak McShane integral
Keyword: multiplier
MSC: 26A39
MSC: 28B05
MSC: 46G10
idZBL: Zbl 07088833
idMR: MR3934195
DOI: 10.21136/MB.2018.0044-17
.
Date available: 2019-03-21T12:29:53Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147636
.
Reference: [1] Piazza, L. Di, Marraffa, V.: An equivalent definition of the vector-valued McShane integral by means of partitions of unity.Stud. Math. 151 (2002), 175-185. Zbl 1005.28009, MR 1917952, 10.4064/sm151-2-5
Reference: [2] Dunford, N., Pettis, B. J.: Linear operations on summable functions.Trans. Am. Math. Soc. 47 (1940), 323-392. Zbl 0023.32902, MR 0002020, 10.2307/1989960
Reference: [3] Fremlin, D. H.: The generalized McShane integral.Ill. J. Math. 39 (1995), 39-67. Zbl 0810.28006, MR 1299648, 10.1215/ijm/1255986628
Reference: [4] Fremlin, D. H.: Measure Theory. Vol. 2. Broad Foundations.Torres Fremlin, Colchester (2003). Zbl 1165.28001, MR 2462280
Reference: [5] Fremlin, D. H.: Measure Theory. Vol. 4. Topological Measure Spaces. Part I, II.Torres Fremlin, Colchester (2006). Zbl 1166.28001, MR 2462372
Reference: [6] Geitz, R. F.: Pettis integration.Proc. Am. Math. Soc. 82 (1981), 81-86. Zbl 0506.28007, MR 0603606, 10.2307/2044321
Reference: [7] Hewitt, E., Stromberg, K.: Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable.Graduate Texts in Mathematics 25. Springer, New York (1965). Zbl 0137.03202, MR 0188387, 10.1007/978-3-642-88047-6
Reference: [8] Musiał, K.: Vitali and Lebesgue convergence theorems for Pettis integral in locally convex spaces.Atti Semin. Mat. Fis. Univ. Modena 35 (1987), 159-165. Zbl 0636.28005, MR 0922998
Reference: [9] Saadoune, M., Sayyad, R.: The weak McShane integral.Czech. Math. J. 64 (2014), 387-418. Zbl 1340.28016, MR 3277743, 10.1007/s10587-014-0108-7
Reference: [10] Sayyad, R.: The McShane integral in the limit.Real Anal. Exch. 42 (2017), 283-310. MR 3721803, 10.14321/realanalexch.42.2.0283
.

Files

Files Size Format View
MathBohem_144-2019-1_2.pdf 291.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo