Previous |  Up |  Next

Article

Title: Generalization of the weak amenability on various Banach algebras (English)
Author: Eshaghi Gordji, Madjid
Author: Jabbari, Ali
Author: Bodaghi, Abasalt
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 1
Year: 2019
Pages: 1-11
Summary lang: English
.
Category: math
.
Summary: The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal A}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well. (English)
Keyword: Banach algebra
Keyword: $(\varphi ,\psi )$-derivation
Keyword: group algebra
Keyword: locally compact group
Keyword: measure algebra
Keyword: Segal algebra
Keyword: weak amenability
MSC: 43A20
MSC: 46H20
idZBL: Zbl 07088832
idMR: MR3934194
DOI: 10.21136/MB.2018.0046-17
.
Date available: 2019-03-21T12:29:25Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147633
.
Reference: [1] Bade, W. G., Jr., P. C. Curtis, Dales, H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras.Proc. Lond. Math. Soc., III. Ser. 55 (1987), 359-377. Zbl 0634.46042, MR 0896225, 10.1093/plms/s3-55_2.359
Reference: [2] Bodaghi, A.: Module $(\varphi,\psi)$-amenability of Banach algeras.Arch. Math., Brno 46 (2010), 227-235. Zbl 1240.43001, MR 2754062
Reference: [3] Bodaghi, A.: Generalized notion of weak module amenability.Hacet. J. Math. Stat. 43 (2014), 85-95. Zbl 1327.46047, MR 3185637
Reference: [4] Bodaghi, A., Gordji, M. Eshaghi, Medghalchi, A. R.: A generalization of the weak amenability of Banach algebras.Banach J. Math. Anal. 3 (2009), 131-142. Zbl 1163.46034, MR 2461753, 10.15352/bjma/1240336430
Reference: [5] Bodaghi, A., Shojaee, B.: A generalized notion of $n$-weak amenability.Math. Bohemica 139 (2014), 99-112. Zbl 1340.46040, MR 3231432
Reference: [6] Dales, H. G., Ghahramani, F., Helemskii, A. Ya.: The amenability of measure algebras.J. Lond. Math. Soc., II. Ser. 66 (2002), 213-226. Zbl 1015.43002, MR 1911870, 10.1112/S0024610702003381
Reference: [7] Dales, H. G., Pandey, S. S.: Weak amenability of Segal algebras.Proc. Am. Math. Soc. 128 (2000), 1419-1425. Zbl 0952.43003, MR 1641681, 10.1090/S0002-9939-99-05139-4
Reference: [8] Despić, M., Ghahramani,, F.: Weak amenability of group algebras of locally compact groups.Can. Math. Bull. 37 (1994), 165-167. Zbl 0813.43001, MR 1275699, 10.4153/CMB-1994-024-4
Reference: [9] Ghahramani, F., Lau, A. T. M.: Weak amenability of certain classes of Banach algebras without bounded approximate identities.Math. Proc. Camb. Philos. Soc. 133 (2002), 357-371. Zbl 1010.46048, MR 1912407, 10.1017/S0305004102005960
Reference: [10] Grønbæk, N.: A characterization of weakly amenable Banach algebras.Studia Math. 94 (1989), 149-162. Zbl 0704.46030, MR 1025743, 10.4064/sm-94-2-149-162
Reference: [11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations.Grundlehren der mathematischen Wissenschaften 115. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1979). Zbl 0416.43001, MR 0551496, 10.1007/978-1-4419-8638-2
Reference: [12] Johnson, B. E.: Cohomology in Banach Algebras.Mem. Am. Math. Soc. 127. AMS, Providence (1972). Zbl 0256.18014, MR 0374934
Reference: [13] Johnson, B. E.: Weak amenability of group algebras.Bull. Lond. Math. Soc. 23 (1991), 281-284. Zbl 0757.43002, MR 1123339, 10.1112/blms/23.3.281
Reference: [14] Lau, A. T. M., Loy, R. J.: Weak amenability of Banach algebras on locally compact groups.J. Funct. Anal. 145 (1997), 175-204. Zbl 0890.46036, MR 1442165, 10.1006/jfan.1996.3002
Reference: [15] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma,\tau)$-amenability of Banach algebras.Stud. Univ. Babeş-Bolyai, Math. 53 (2008), 57-68. Zbl 1199.46111, MR 2487108
Reference: [16] Reiter, H., Stegeman, J. D.: Classical Harmonic Analysis and Locally Compact Groups.London Mathematical Society Monographs. New Series 22. Clarendon Press, Oxford (2000). Zbl 0965.43001, MR 1802924
Reference: [17] Zhang, Y.: Weak amenability of a class of Banach algebras.Can. Math. Bull. 44 (2001), 504-508. Zbl 1156.46306, MR 1863642, 10.4153/CMB-2001-050-7
.

Files

Files Size Format View
MathBohem_144-2019-1_1.pdf 287.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo