Title:
|
Generalization of the weak amenability on various Banach algebras (English) |
Author:
|
Eshaghi Gordji, Madjid |
Author:
|
Jabbari, Ali |
Author:
|
Bodaghi, Abasalt |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
1-11 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The generalized notion of weak amenability, namely $(\varphi ,\psi )$-weak amenability, where $\varphi ,\psi $ are continuous homomorphisms on a Banach algebra ${\mathcal A}$, was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the $(\varphi ,\psi )$-weak amenability on the measure algebra $M(G)$, the group algebra $L^1(G)$ and the Segal algebra $S^1(G)$, where $G$ is a locally compact group, are studied. As a typical example, the $(\varphi ,\psi )$-weak amenability of a special semigroup algebra is shown as well. (English) |
Keyword:
|
Banach algebra |
Keyword:
|
$(\varphi ,\psi )$-derivation |
Keyword:
|
group algebra |
Keyword:
|
locally compact group |
Keyword:
|
measure algebra |
Keyword:
|
Segal algebra |
Keyword:
|
weak amenability |
MSC:
|
43A20 |
MSC:
|
46H20 |
idZBL:
|
Zbl 07088832 |
idMR:
|
MR3934194 |
DOI:
|
10.21136/MB.2018.0046-17 |
. |
Date available:
|
2019-03-21T12:29:25Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147633 |
. |
Reference:
|
[1] Bade, W. G., Jr., P. C. Curtis, Dales, H. G.: Amenability and weak amenability for Beurling and Lipschitz algebras.Proc. Lond. Math. Soc., III. Ser. 55 (1987), 359-377. Zbl 0634.46042, MR 0896225, 10.1093/plms/s3-55_2.359 |
Reference:
|
[2] Bodaghi, A.: Module $(\varphi,\psi)$-amenability of Banach algeras.Arch. Math., Brno 46 (2010), 227-235. Zbl 1240.43001, MR 2754062 |
Reference:
|
[3] Bodaghi, A.: Generalized notion of weak module amenability.Hacet. J. Math. Stat. 43 (2014), 85-95. Zbl 1327.46047, MR 3185637 |
Reference:
|
[4] Bodaghi, A., Gordji, M. Eshaghi, Medghalchi, A. R.: A generalization of the weak amenability of Banach algebras.Banach J. Math. Anal. 3 (2009), 131-142. Zbl 1163.46034, MR 2461753, 10.15352/bjma/1240336430 |
Reference:
|
[5] Bodaghi, A., Shojaee, B.: A generalized notion of $n$-weak amenability.Math. Bohemica 139 (2014), 99-112. Zbl 1340.46040, MR 3231432 |
Reference:
|
[6] Dales, H. G., Ghahramani, F., Helemskii, A. Ya.: The amenability of measure algebras.J. Lond. Math. Soc., II. Ser. 66 (2002), 213-226. Zbl 1015.43002, MR 1911870, 10.1112/S0024610702003381 |
Reference:
|
[7] Dales, H. G., Pandey, S. S.: Weak amenability of Segal algebras.Proc. Am. Math. Soc. 128 (2000), 1419-1425. Zbl 0952.43003, MR 1641681, 10.1090/S0002-9939-99-05139-4 |
Reference:
|
[8] Despić, M., Ghahramani,, F.: Weak amenability of group algebras of locally compact groups.Can. Math. Bull. 37 (1994), 165-167. Zbl 0813.43001, MR 1275699, 10.4153/CMB-1994-024-4 |
Reference:
|
[9] Ghahramani, F., Lau, A. T. M.: Weak amenability of certain classes of Banach algebras without bounded approximate identities.Math. Proc. Camb. Philos. Soc. 133 (2002), 357-371. Zbl 1010.46048, MR 1912407, 10.1017/S0305004102005960 |
Reference:
|
[10] Grønbæk, N.: A characterization of weakly amenable Banach algebras.Studia Math. 94 (1989), 149-162. Zbl 0704.46030, MR 1025743, 10.4064/sm-94-2-149-162 |
Reference:
|
[11] Hewitt, E., Ross, K. A.: Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations.Grundlehren der mathematischen Wissenschaften 115. A Series of Comprehensive Studies in Mathematics. Springer, Berlin (1979). Zbl 0416.43001, MR 0551496, 10.1007/978-1-4419-8638-2 |
Reference:
|
[12] Johnson, B. E.: Cohomology in Banach Algebras.Mem. Am. Math. Soc. 127. AMS, Providence (1972). Zbl 0256.18014, MR 0374934 |
Reference:
|
[13] Johnson, B. E.: Weak amenability of group algebras.Bull. Lond. Math. Soc. 23 (1991), 281-284. Zbl 0757.43002, MR 1123339, 10.1112/blms/23.3.281 |
Reference:
|
[14] Lau, A. T. M., Loy, R. J.: Weak amenability of Banach algebras on locally compact groups.J. Funct. Anal. 145 (1997), 175-204. Zbl 0890.46036, MR 1442165, 10.1006/jfan.1996.3002 |
Reference:
|
[15] Moslehian, M. S., Motlagh, A. N.: Some notes on $(\sigma,\tau)$-amenability of Banach algebras.Stud. Univ. Babeş-Bolyai, Math. 53 (2008), 57-68. Zbl 1199.46111, MR 2487108 |
Reference:
|
[16] Reiter, H., Stegeman, J. D.: Classical Harmonic Analysis and Locally Compact Groups.London Mathematical Society Monographs. New Series 22. Clarendon Press, Oxford (2000). Zbl 0965.43001, MR 1802924 |
Reference:
|
[17] Zhang, Y.: Weak amenability of a class of Banach algebras.Can. Math. Bull. 44 (2001), 504-508. Zbl 1156.46306, MR 1863642, 10.4153/CMB-2001-050-7 |
. |