Previous |  Up |  Next

Article

Title: Polynomials, sign patterns and Descartes' rule of signs (English)
Author: Kostov, Vladimir Petrov
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 1
Year: 2019
Pages: 39-67
Summary lang: English
.
Category: math
.
Summary: By Descartes' rule of signs, a real degree $d$ polynomial $P$ with all nonvanishing coefficients with $c$ sign changes and $p$ sign preservations in the sequence of its coefficients ($c+p=d$) has ${\rm pos}\leq c$ positive and $\neg \leq p$ negative roots, where ${\rm pos}\equiv c\pmod 2$ and $\neg \equiv p\pmod 2$. For $1\leq d\leq 3$, for every possible choice of the sequence of signs of coefficients of $P$ (called sign pattern) and for every pair $({\rm pos}, {\rm neg})$ satisfying these conditions there exists a polynomial $P$ with exactly ${\rm pos}$ positive and exactly $\neg $ negative roots (all of them simple). For $d\geq 4$ this is not so. It was observed that for $4\leq d\leq 8$, in all nonrealizable cases either ${\rm pos}=0$ or ${\rm neg}=0$. It was conjectured that this is the case for any $d\geq 4$. We show a counterexample to this conjecture for $d=11$. Namely, we prove that for the sign pattern $(+,-,-,-,-,-,+,+,+,+,+,-)$ and the pair $(1,8)$ there exists no polynomial with $1$ positive, $8$ negative simple roots and a complex conjugate pair. (English)
Keyword: real polynomial in one variable
Keyword: sign pattern
Keyword: Descartes' rule of signs
MSC: 26C10
MSC: 30C15
idZBL: Zbl 07088835
idMR: MR3934197
DOI: 10.21136/MB.2018.0091-17
.
Date available: 2019-03-21T12:31:05Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147638
.
Reference: [1] Albouy, A., Fu, Y.: Some remarks about Descartes' rule of signs.Elem. Math. 69 (2014), 186-194. Zbl 1342.12002, MR 3272179, 10.4171/EM/262
Reference: [2] Cajori, F.: A history of the arithmetical methods of approximation to the roots of numerical equations of one unknown quantity.Colorado College Publication, Science Series 12 (1910), 171-215, 217-287 \99999JFM99999 42.0057.02.
Reference: [3] Forsgård, J., Kostov, V. P., Shapiro, B. Z.: Could René Descartes have known this?.Exp. Math. 24 (2015), 438-448. Zbl 1326.26027, MR 3383475, 10.1080/10586458.2015.1030051
Reference: [4] Forsgård, J., Kostov, V. P., Shapiro, B. Z.: Corrigendum:"Could René Descartes have known this?".(to appear) in Exp. Math. MR 3383475, 10.1080/10586458.2017.1417775
Reference: [5] Fourier, J.: Sur l'usage du théorème de Descartes dans la recherche des limites des racines.Bulletin des sciences par la Société Philomatique de Paris (1820), 156-165, 181-187 Oeuvres de Fourier publiées par les soins de M. Gaston Darboux sous les auspices du ministère de l'instruction publique. Tome II. Mémoires publiés dans divers recueils Gauthier-Villars, Paris 1890 291-309\kern0pt French \99999JFM99999 22.0021.01.
Reference: [6] Gauss, C. F.: Beweis eines algebraischen Lehrsatzes.J. Reine Angew. Math. 3 (1828), 1-4 German. Zbl 003.0089cj, MR 1577673, 10.1515/crll.1828.3.1
Reference: [7] Grabiner, D. J.: Descartes' rule of signs: Another construction.Am. Math. Mon. 106 (1999), 854-856. Zbl 0980.12001, MR 1732666, 10.2307/2589619
Reference: [8] Kostov, V. P.: On realizability of sign patterns by real polynomials.(to appear) in Czech. Math. J. MR 3851896, 10.21136/CMJ.2018.0163-17
Reference: [9] Kostov, V. P., Shapiro, B.: Something you always wanted to know about real polynomials (but were afraid to ask).Avaible at https://arxiv.org/abs/1703.04436.
.

Files

Files Size Format View
MathBohem_144-2019-1_4.pdf 413.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo