Title:
|
Some convergence, stability and data dependency results for a Picard-S iteration method of quasi-strictly contractive operators (English) |
Author:
|
Ertürk, Müzeyyen |
Author:
|
Gürsoy, Faik |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
144 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
69-83 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study some qualitative features like convergence, stability and data dependency for Picard-S iteration method of a quasi-strictly contractive operator under weaker conditions imposed on parametric sequences in the mentioned method. We compare the rate of convergence among the Mann, Ishikawa, Noor, normal-S, and Picard-S iteration methods for the quasi-strictly contractive operators. Results reveal that the Picard-S iteration method converges fastest to the fixed point of quasi-strictly contractive operators. Some numerical examples are given to validate the results obtained herein. Our results substantially improve many other results available in the literature. (English) |
Keyword:
|
iteration method |
Keyword:
|
quasi-strictly contractive operator |
Keyword:
|
convergence |
Keyword:
|
rate of convergence |
Keyword:
|
stability |
Keyword:
|
data dependency |
MSC:
|
47H09 |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 07088836 |
idMR:
|
MR3934198 |
DOI:
|
10.21136/MB.2018.0085-17 |
. |
Date available:
|
2019-03-21T12:31:49Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147639 |
. |
Reference:
|
[1] Akewe, H., Okeke, G. A.: Convergence and stability theorems for the Picard-Mann hybrid iterative scheme for a general class of contractive-like operators.Fixed Point Theory Appl. 2015 (2015), Paper No. 66, 8 pages. Zbl 1312.47078, MR 3343141, 10.1186/s13663-015-0315-4 |
Reference:
|
[2] Berinde, V.: Picard iteration converges faster than Mann iteration for a class of quasi-contractive operators.Fixed Point Theory Appl. 2004 (2004), 97-105. Zbl 1090.47053, MR 2086709, 10.1155/S1687182004311058 |
Reference:
|
[3] Berinde, V.: Iterative Approximation of Fixed Points.Lecture Notes in Mathematics 1912. Springer, Berlin (2007). Zbl 1165.47047, MR 2323613, 10.1007/978-3-540-72234-2 |
Reference:
|
[4] Berinde, V.: On a notion of rapidity of convergence used in the study of fixed point iterative methods.Creat. Math. Inform. 25 (2016), 29-40. Zbl 06762010, MR 3558671 |
Reference:
|
[5] Berinde, V., Păcurar, M.: A fixed point proof of the convergence of a Newton-type method.Fixed Point Theory 7 (2006), 235-244. Zbl 1115.65053, MR 2284596 |
Reference:
|
[6] Bosede, A. O., Rhoades, B. E.: Stability of Picard and Mann iteration for a general class of functions.J. Adv. Math. Stud. 3 (2010), 23-25. Zbl 1210.47093, MR 2722440 |
Reference:
|
[7] Chidume, C. E., Olaleru, J. O.: Picard iteration process for a general class of contractive mappings.J. Niger. Math. Soc. 33 (2014), 19-23. Zbl 1341.47079, MR 3235868 |
Reference:
|
[8] Fukhar-ud-din, H., Berinde, V.: Iterative methods for the class of quasi-contractive type operators and comparison of their rate of convergence in convex metric spaces.Filomat 30 (2016), 223-230. Zbl 06749677, MR 3498766, 10.2298/FIL1601223F |
Reference:
|
[9] Gürsoy, F.: A Picard-S iterative method for approximating fixed point of weak-contraction mappings.Filomat 30 (2016), 2829-2845. Zbl 06749928, MR 3583408, 10.2298/FIL1610829G |
Reference:
|
[10] Gürsoy, F., Karakaya, V.: A Picard-S hybrid type iteration method for solving a differential equation with retarded argument.Avaible at https://arxiv.org/abs/1403.2546 (2014), 16 pages. |
Reference:
|
[11] Gürsoy, F., Karakaya, V., Rhoades, B. E.: Data dependence results of new multi-step and S-iterative schemes for contractive-like operators.Fixed Point Theory Appl. 2013 (2013), Paper No. 76, 12 pages. Zbl 06282865, MR 3047130, 10.1186/1687-1812-2013-76 |
Reference:
|
[12] Gürsoy, F., Khan, A. R., Fukhar-ud-din, H.: Convergence and data dependence results for quasi-contractive type operators in hyperbolic spaces.Hacet. J. Math. Stat. 46 (2017), 373-388. Zbl 06810307, MR 36991880, 10.15672/HJMS.20174720334 |
Reference:
|
[13] Haghi, R. H., Postolache, M., Rezapour, S.: On T-stability of the Picard iteration for generalized $\phi$-contraction mappings.Abstr. Appl. Anal. 2012 (2012), Article ID 658971, 7 pages. Zbl 1252.54035, MR 2965457, 10.1155/2012/658971 |
Reference:
|
[14] Harder, A. M., Hicks, T. L.: Stability results for fixed point iteration procedures.Math. Jap. 33 (1988), 693-706. Zbl 0655.47045, MR 0972379 |
Reference:
|
[15] Ishikawa, S.: Fixed points by a new iteration method.Proc. Am. Math. Soc. 44 (1974), 147-150. Zbl 0286.47036, MR 0336469, 10.2307/2039245 |
Reference:
|
[16] Karakaya, V., Doğan, K., Gürsoy, F., Ertürk, M.: Fixed point of a new three-step iteration algorithm under contractive-like operators over normed spaces.Abstr. Appl. Anal. 2013 (2013), Article ID 560258, 9 pages. Zbl 1364.47026, MR 3147859, 10.1155/2013/560258 |
Reference:
|
[17] Karakaya, V., Gürsoy, F., Ertürk, M.: Some convergence and data dependence results for various fixed point iterative methods.Kuwait J. Sci. 43 (2016), 112-128. MR 3496310 |
Reference:
|
[18] Khan, S. H.: A Picard-Mann hybrid iterative process.Fixed Point Theory Appl. 2013 (2013), Paper No. 69, 10 pages. Zbl 1317.47065, MR 3053809, 10.1186/1687-1812-2013-69 |
Reference:
|
[19] Khan, A. R., Gürsoy, F., Karakaya, V.: Jungck-Khan iterative scheme and higher convergence rate.Int. J. Comput. Math. 93 (2016), 2092-2105. Zbl 06679732, MR 3576658, 10.1080/00207160.2015.1085030 |
Reference:
|
[20] Khan, A. R., Gürsoy, F., Kumar, V.: Stability and data dependence results for the Jungck-Khan iterative scheme.Turkish J. Math. 40 (2016), 631-640. MR 3486126, 10.3906/mat-1503-1 |
Reference:
|
[21] Khan, A. R., Kumar, V., Hussain, N.: Analytical and numerical treatment of Jungck-type iterative schemes.Appl. Math. Comput. 231 (2014), 521-535. MR 3174051, 10.1016/j.amc.2013.12.150 |
Reference:
|
[22] Mann, W. R.: Mean value methods in iteration.Proc. Am. Math. Soc. 4 (1953), 506-510. Zbl 0050.11603, MR 0054846, 10.2307/2032162 |
Reference:
|
[23] Okeke, G. A., Kim, J. K.: Convergence and summable almost $T$-stability of the random Picard-Mann hybrid iterative process.J. Inequal. Appl. 2015 (2015), Paper No. 290, 14 pages. Zbl 1351.47051, MR 3399253, 10.1186/s13660-015-0815-0 |
Reference:
|
[24] Olatinwo, M. O., Postolache, M.: Stability results for Jungck-type iterative processes in convex metric spaces.Appl. Math. Comput. 218 (2012), 6727-6732. Zbl 1293.54033, MR 2880328, 10.1016/j.amc.2011.12.038 |
Reference:
|
[25] Phuengrattana, W., Suantai, S.: Comparison of the rate of convergence of various iterative methods for the class of weak contractions in Banach spaces.Thai J. Math. 11 (2013), 217-226. Zbl 1294.47090, MR 3065435 |
Reference:
|
[26] Picard, E.: Mémoire sur la théorie des équations aux dérivées partielles et la méthode des approximations successives.Journ. de Math. (4) 6 (1890), 145-210 French \99999JFM99999 22.0357.02. |
Reference:
|
[27] Sahu, D. R.: Applications of the S-iteration process to constrained minimization problems and split feasibility problems.Fixed Point Theory 12 (2011), 187-204. Zbl 1281.47053, MR 2797080 |
Reference:
|
[28] Scherzer, O.: Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems.J. Math. Anal. Appl. 194 (1995), 911-933. Zbl 0842.65036, MR 1350202, 10.1006/jmaa.1995.1335 |
Reference:
|
[29] Şoltuz, Ş. M., Grosan, T.: Data dependence for Ishikawa iteration when dealing with contractive-like operators.Fixed Point Theory Appl. 2008 (2008), Article ID 242916, 7 pages. Zbl 1205.47059, MR 2415408, 10.1155/2008/242916 |
Reference:
|
[30] Xu, B., Noor, M. A.: Fixed-point iterations for asymptotically nonexpansive mappings in Banach spaces.J. Math. Anal. Appl. 267 (2002), 444-453. Zbl 1011.47039, MR 1888015, 10.1006/jmaa.2001.7649 |
Reference:
|
[31] Yildirim, I., Abbas, M., Karaca, N.: On the convergence and data dependence results for multistep Picard-Mann iteration process in the class of contractive-like operators.J. Nonlinear Sci. Appl. 9 (2016), 3773-3786. Zbl 1350.47050, MR 3517127, 10.22436/jnsa.009.06.27 |
. |