Title:
|
Fixed points with respect to the L-slice homomorphism $\sigma _{a} $ (English) |
Author:
|
Sabna, K.S. |
Author:
|
Mangalambal, N.R. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
55 |
Issue:
|
1 |
Year:
|
2019 |
Pages:
|
43-53 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given a locale $L$ and a join semilattice $J$ with bottom element $0_{J}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _{a} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _{a};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname{Hom}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _{a}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties. (English) |
Keyword:
|
$L$-slice |
Keyword:
|
$L$-slice homomorphism |
Keyword:
|
subslice |
Keyword:
|
fixed set and ideals |
MSC:
|
03G10 |
MSC:
|
06A12 |
MSC:
|
06D22 |
idZBL:
|
Zbl 07088757 |
idMR:
|
MR3939063 |
DOI:
|
10.5817/AM2019-1-43 |
. |
Date available:
|
2019-03-23T12:22:03Z |
Last updated:
|
2020-02-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147649 |
. |
Reference:
|
[1] Abramsky, S., Jung, A.: Domain Theory.Handbook of Logic in Computer Science, 1994, pp. 1–168. MR 1365749 |
Reference:
|
[2] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra.Addison-Wesley Publishing Company, 1969, Student economy edition. MR 0242802 |
Reference:
|
[3] Birkhoff, G.: Lattice Theory.American Mathematical Society, 1940. Zbl 0063.00402, MR 0001959 |
Reference:
|
[4] Gratzer, G.: General lattice theory.Birkhauser, 2003. MR 2451139 |
Reference:
|
[5] Johnstone, P.T.: Stone Spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074 |
Reference:
|
[6] Johnstone, P.T.: The point of pointless topology.Bull. Amer. Math. Soc. (N.S.) (1983), 41–53. MR 0682820, 10.1090/S0273-0979-1983-15080-2 |
Reference:
|
[7] Matsumara, H.: Commutative algebra.W.A. Benjamin, Inc., New York, 1970. MR 0266911 |
Reference:
|
[8] Musli, C.: Introduction to Rings and Modules.Narosa Publishing House, 1994. |
Reference:
|
[9] Picado, J., Pultr, A.: Frames and locales. Topology without points Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel,.Frontiers in Mathematics. Birkhauser/Springer Basel AG, Basel, 2012. MR 2868166 |
Reference:
|
[10] Scott, D., Strachey, C.: Towards a mathematical semantics for computer languages.Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of Brooklyn Press, New York, 1971. |
Reference:
|
[11] Vickers, S.: Topology via Logic.Cambridge Tracts Theoret. Comput. Sci. (1989). MR 1002193 |
. |