Previous |  Up |  Next

Article

Title: Fixed points with respect to the L-slice homomorphism $\sigma _{a} $ (English)
Author: Sabna, K.S.
Author: Mangalambal, N.R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 43-53
Summary lang: English
.
Category: math
.
Summary: Given a locale $L$ and a join semilattice $J$ with bottom element $0_{J}$, a new concept $(\sigma ,J)$ called $L$-slice is defined,where $\sigma $ is as an action of the locale $L$ on the join semilattice $J$. The $L$-slice $(\sigma ,J)$ adopts topological properties of the locale $L$ through the action $\sigma $. It is shown that for each $a\in L$, $\sigma _{a} $ is an interior operator on $(\sigma ,J)$.The collection $M=\lbrace \sigma _{a};a \in L\rbrace $ is a Priestly space and a subslice of $L$-$\operatorname{Hom}(J,J)$. If the locale $L$ is spatial we establish an isomorphism between the $L$-slices $(\sigma ,L) $ and $(\delta ,M) $. We have shown that the fixed set of $\sigma _{a}$, $a\in L $ is a subslice of $(\sigma ,J)$ and prove some equivalent properties. (English)
Keyword: $L$-slice
Keyword: $L$-slice homomorphism
Keyword: subslice
Keyword: fixed set and ideals
MSC: 03G10
MSC: 06A12
MSC: 06D22
idZBL: Zbl 07088757
idMR: MR3939063
DOI: 10.5817/AM2019-1-43
.
Date available: 2019-03-23T12:22:03Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147649
.
Reference: [1] Abramsky, S., Jung, A.: Domain Theory.Handbook of Logic in Computer Science, 1994, pp. 1–168. MR 1365749
Reference: [2] Atiyah, M.F., Macdonald, I.G.: Introduction to commutative algebra.Addison-Wesley Publishing Company, 1969, Student economy edition. MR 0242802
Reference: [3] Birkhoff, G.: Lattice Theory.American Mathematical Society, 1940. Zbl 0063.00402, MR 0001959
Reference: [4] Gratzer, G.: General lattice theory.Birkhauser, 2003. MR 2451139
Reference: [5] Johnstone, P.T.: Stone Spaces.Cambridge University Press, 1982. Zbl 0499.54001, MR 0698074
Reference: [6] Johnstone, P.T.: The point of pointless topology.Bull. Amer. Math. Soc. (N.S.) (1983), 41–53. MR 0682820, 10.1090/S0273-0979-1983-15080-2
Reference: [7] Matsumara, H.: Commutative algebra.W.A. Benjamin, Inc., New York, 1970. MR 0266911
Reference: [8] Musli, C.: Introduction to Rings and Modules.Narosa Publishing House, 1994.
Reference: [9] Picado, J., Pultr, A.: Frames and locales. Topology without points Frontiers in Mathematics. Birkhäuser/Springer Basel AG, Basel,.Frontiers in Mathematics. Birkhauser/Springer Basel AG, Basel, 2012. MR 2868166
Reference: [10] Scott, D., Strachey, C.: Towards a mathematical semantics for computer languages.Proceedings of the Symposium on Computers and Automata, Polytechnic Institute of Brooklyn Press, New York, 1971.
Reference: [11] Vickers, S.: Topology via Logic.Cambridge Tracts Theoret. Comput. Sci. (1989). MR 1002193
.

Files

Files Size Format View
ArchMathRetro_055-2019-1_6.pdf 500.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo