Previous |  Up |  Next

Article

Title: Operator Connes-amenability of completely bounded multiplier Banach algebras (English)
Author: Hayati, Bahman
Author: Bodaghi, Abasalt
Author: Amini, Massoud
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 31-42
Summary lang: English
.
Category: math
.
Summary: For a completely contractive Banach algebra $B$, we find conditions under which the completely bounded multiplier algebra $\mathcal{M}_{cb}(B)$ is a dual Banach algebra and the operator amenability of $B$ is equivalent to the operator Connes-amenability of $\mathcal{M}_{cb}(B)$. We also show that, in this case, these are equivalent to the existence of a normal virtual operator diagonal. (English)
Keyword: amenability
Keyword: Connes-amenability
Keyword: dual multiplier algebra
Keyword: normal virtual operator diagonal
MSC: 46H20
idZBL: Zbl 07088756
idMR: MR3939062
DOI: 10.5817/AM2019-1-31
.
Date available: 2019-03-23T12:21:09Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147648
.
Reference: [1] Daws, M.: Connes-amenability of bidual and weighted semigroup algebras.Math. Scand. 99 (2006), 217–246. MR 2289023, 10.7146/math.scand.a-15010
Reference: [2] Daws, M.: Multipliers, self-induced and dual Banach algebras.Dissertationes Math. (Rozprawy Mat.) 470 (2010), 62 pp. MR 2681109
Reference: [3] Deutsch, E.: Matricial norms.Numer. Math. 19 (1) (1970), 73–84. MR 0277552, 10.1007/BF02162408
Reference: [4] Effros, E.G., Ruan, Z.-J.: Operator Spaces.Clarendon Press, 2000. MR 1793753
Reference: [5] Hayati, B., Amini, M.: Connes-amenability of multiplier Banach algebras.Kyoto J. Math. 50 (2010), 41–50. MR 2629641, 10.1215/0023608X-2009-003
Reference: [6] Hayati, B., Amini, M.: Dual multiplier Banach algebras and Connes-amenability.Publ. Math. Debrecen 86 (2015), 169–182. MR 3300584, 10.5486/PMD.2015.7043
Reference: [7] Helmeskii, A.Ya.: Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule.Math. USSR.-Sb. 68 (1991), 555–566. 10.1070/SM1991v068n02ABEH001374
Reference: [8] Johnson, B.E.: An introduction to the theory of centralizers.Proc. London Math. Soc. 14 (1964), 299–320. MR 0159233, 10.1112/plms/s3-14.2.299
Reference: [9] Johnson, B.E.: Cohomology in Banach Algebras.Mem. Amer. Math. Soc. 127 (1972). Zbl 0256.18014, MR 0374934
Reference: [10] Johnson, B.E.: Non-amenability of the Fourier algebra of a compact group.J. London Math. Soc. 50 (2) (1994), 361–374. MR 1291743, 10.1112/jlms/50.2.361
Reference: [11] Johnson, B.E., Kadison, R.V., Ringrose, J.R.: Cohomology of operator algebras III.Bull. Soc. Math. France 100 (1972), 73–96. MR 0318908, 10.24033/bsmf.1731
Reference: [12] Larsen, R.: An Introduction to the Theory of Mutipliers.Springer-Verlag, Berlin, 1971. MR 0435738
Reference: [13] Oshobi, E.O., Pym, J.S.: Banach algebras whose duals consist of multipliers.Math. Proc. Cambridge Philos. Soc. 102 (1987), 481–505. MR 0906623, 10.1017/S0305004100067542
Reference: [14] Ruan, Z.-J.: The operator amenability of $A(G)$.Amer. J. Math. 117 (1995), 1449–1474. MR 1363075, 10.2307/2375026
Reference: [15] Runde, V.: Amenability for dual Banach algebras.Studia Math. 148 (2001), 47–66. Zbl 1003.46028, MR 1881439, 10.4064/sm148-1-5
Reference: [16] Runde, V.: Lectures on Amenability.Lecture Notes in Math., vol. 1774, Springer-Verlag, Berlin-Heidelberg-New York, 2002. Zbl 0999.46022, MR 1874893
Reference: [17] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. I.J. London Math. Soc. 67 (2003), 643–656. MR 1967697, 10.1112/S0024610703004125
Reference: [18] Runde, V.: Connes-amenability and normal, virtual diagonals for measure algebras. II.Bull. Austral. Math. Soc. 68 (2003), 325–328. MR 2016307, 10.1017/S0004972700037709
Reference: [19] Runde, V.: Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule.Math. Scand. 95 (2004), 124–144. MR 2091485, 10.7146/math.scand.a-14452
Reference: [20] Runde, V., Spronk, N.: Operator amenability of Fourier-Stieltjes algebras.Math. Proc. Cambridge Philos. Soc. 136 (2004), 675–686. MR 2055055, 10.1017/S030500410300745X
Reference: [21] Runde, V., Uygul, F.: Connes-amenability of Fourier-Stieltjes algebras.Bull. London Math. Soc. (2015). MR 3375923
Reference: [22] Spronk, N.: Measurable Schur multiplies and completely bounded multipliers of the Fourier algebras.Proc. London Math. Soc. 89 (2004), 161–192. MR 2063663
.

Files

Files Size Format View
ArchMathRetro_055-2019-1_5.pdf 530.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo