Previous |  Up |  Next

Article

Title: Shape optimization for a time-dependent model of a carousel press in glass production (English)
Author: Salač, Petr
Author: Stebel, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 2
Year: 2019
Pages: 195-224
Summary lang: English
.
Category: math
.
Summary: This contribution presents the shape optimization problem of the plunger cooling cavity for the time dependent model of pressing the glass products. The system of the mould, the glass piece, the plunger and the plunger cavity is considered in four consecutive time intervals during which the plunger moves between 6 glass moulds. \endgraf The state problem is represented by the steady-state Navier-Stokes equations in the cavity and the doubly periodic energy equation in the whole system, under the assumption of rotational symmetry, supplemented by suitable boundary conditions. \endgraf The cost functional is defined as the squared weighted $ L^2 $ norm of the difference between a prescribed constant and the temperature of the plunger surface layer at the moment before separation of the plunger and the glass piece. \endgraf The existence and uniqueness of the solution to the state problem and the existence of a solution to the optimization problem are proved. (English)
Keyword: shape optimization
Keyword: Navier-Stokes equations
Keyword: heat transfer
MSC: 49Q10
MSC: 76D55
MSC: 93C20
idZBL: Zbl 07088737
idMR: MR3936968
DOI: 10.21136/AM.2019.0301-18
.
Date available: 2019-05-07T09:09:50Z
Last updated: 2021-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147663
.
Reference: [1] Chenais, D.: On the existence of a solution in a domain identification problem.J. Math. Anal. Appl. 52 (1975), 189-219. Zbl 0317.49005, MR 0385666, 10.1016/0022-247X(75)90091-8
Reference: [2] (ed.), A. Fasano: Mathematical Models in the Manufacturing of Glass. C.I.M.E. Summer School, 2008.Lecture Notes in Mathematics 2010, Springer, Berlin (2011). Zbl 1203.00024, MR 3075369, 10.1007/978-3-642-15967-1
Reference: [3] Galdi, G. P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. II: Nonlinear Steady Problems.Springer Tracts in Natural Philosophy 39, Springer, New York (1994). Zbl 0949.35005, MR 1284206
Reference: [4] Hansbo, A.: Error estimates for the numerical solution of a time-periodic linear parabolic problem.BIT 31 (1991), 664-685. Zbl 0780.65057, MR 1140538, 10.1007/BF01933180
Reference: [5] Haslinger, J., Neittaanmäki, P.: Finite Element Approximation for Optimal Shape Design: Theory and Applications.John Wiley & Sons, Chichester (1988). Zbl 0713.73062, MR 0982710
Reference: [6] Korobkov, M., Pileckas, K., Russo, R.: The existence theorem for steady Navier-Stokes equations in the axially symmetric case.Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 14 (2015), 233-262. Zbl 1321.35137, MR 3379492, 10.2422/2036-2145.201204_003
Reference: [7] Kufner, A.: Weighted Sobolev Spaces.A Wiley-Interscience Publication. John Wiley & Sons, New York (1985). Zbl 0567.46009, MR 0802206
Reference: [8] Lieberman, G. M.: Time-periodic solutions of linear parabolic differential equations.Commun. Partial Differ. Equations 24 (1999), 631-663. Zbl 0928.35012, MR 1683052, 10.1080/03605309908821436
Reference: [9] Matoušek, I., Cibulka, J.: Analýza tvarovacího cyklu na karuselovém lisu NOVA.Technická univerzita v Liberci, Liberec (1999), Czech.
Reference: [10] Mercier, B., Raugel, G.: Résolution d'un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta$.RAIRO, Anal. Numér. 16 (1982), 405-461 French. Zbl 0531.65054, MR 0684832, 10.1051/m2an/1982160404051
Reference: [11] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications 4, D. Reidel Publishing Company, Dordrecht (1982). Zbl 0505.65029, MR 0689712
Reference: [12] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.ISNM. International Series of Numerical Mathematics 153, Birkhäuser, Basel (2013). Zbl 1270.35005, MR 3014456, 10.1007/978-3-0348-0513-1
Reference: [13] Salač, P.: Optimal design of the cooling plunger cavity.Appl. Math., Praha 58 (2013), 405-422. Zbl 1289.49043, MR 3083521, 10.1007/s10492-013-0020-8
Reference: [14] Temam, R.: Navier-Stokes Equations. Theory and Numerical Analysis.Studies in Mathematics and Its Applications 2, North-Holland Publishing Company, Amsterdam (1977). Zbl 0383.35057, MR 0609732, 10.1016/S0168-2024(13)70303-5
Reference: [15] Vandewalle, S., Piessens, R.: Efficient parallel algorithms for solving initial-boundary value and time-periodic parabolic partial differential equations.SIAM J. Sci. Stat. Comput. 13 (1992), 1330-1346. Zbl 0766.65076, MR 1185649, 10.1137/0913075
Reference: [16] Vejvoda, O.: Partial Differential Equations: Time-Periodic Solutions.Martinus Nijhoff Publishers, Hague (1981). Zbl 0501.35001, MR 0653987
.

Files

Files Size Format View
AplMat_64-2019-2_5.pdf 444.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo