Previous |  Up |  Next

Article

Title: Nonuniqueness of implicit lattice Nagumo equation (English)
Author: Stehlík, Petr
Author: Volek, Jonáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 2
Year: 2019
Pages: 169-194
Summary lang: English
.
Category: math
.
Summary: We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories. (English)
Keyword: reaction-diffusion equation
Keyword: lattice differential equation
Keyword: nonlinear algebraic problem
Keyword: variational method
Keyword: implicit discretization
MSC: 34A33
MSC: 35K57
MSC: 39A12
MSC: 65Q10
idZBL: Zbl 07088736
idMR: MR3936967
DOI: 10.21136/AM.2019.0270-18
.
Date available: 2019-05-07T09:09:22Z
Last updated: 2021-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147659
.
Reference: [1] Allaire, G., Kaber, S. M.: Numerical Linear Algebra.Texts in Applied Mathematics 55, Springer, New York (2008). Zbl 1135.65014, MR 2365296, 10.1007/978-0-387-68918-0
Reference: [2] Allen, L. J. S.: Persistence, extinction, and critical patch number for island populations.J. Math. Biol. 24 (1987), 617-625. Zbl 0603.92019, MR 0880448, 10.1007/BF00275506
Reference: [3] Ambrosetti, A., Rabinowitz, P. H.: Dual variational methods in critical point theory and applications.J. Funct. Anal. 14 (1973), 349-381. Zbl 0273.49063, MR 0370183, 10.1016/0022-1236(73)90051-7
Reference: [4] Aronson, D. G., Weinberger, H. F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation.Partial Differential Equations and Related Topics 1974 Lecture Notes in Mathematics 446, Springer, Berlin (1975), 5-49. Zbl 0325.35050, MR 0427837, 10.1007/bfb0070595
Reference: [5] Chow, S.-N., Mallet-Paret, J., Shen, W.: Traveling waves in lattice dynamical systems.J. Differ. Equations 149 (1998), 248-291. Zbl 0911.34050, MR 1646240, 10.1006/jdeq.1998.3478
Reference: [6] Chow, S.-N., Shen, W. X.: Dynamics in a discrete Nagumo equation: Spatial topological chaos.SIAM J. Appl. Math. 55 (1995), 1764-1781. Zbl 0840.34012, MR 1358800, 10.1137/S0036139994261757
Reference: [7] Chua, L. O., Yang, L.: Cellular neural networks: applications.IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. MR 0960778, 10.1109/31.7601
Reference: [8] Clark, D. C.: A variant of the Lusternik-Schnirelman theory.Indiana Univ. Math. J. 22 (1972), 65-74. Zbl 0228.58006, MR 0296777, 10.1512/iumj.1972.22.22008
Reference: [9] Drábek, P., Milota, J.: Methods of Nonlinear Analysis. Applications to Differential Equations.Birkhäuser Advanced Texts Basler Lehrbücher, Springer, Basel (2013). Zbl 1264.35001, MR 3025694, 10.1007/978-3-0348-0387-8
Reference: [10] Fife, P. C., McLeod, J. B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions.Arch. Ration. Mech. Anal. 65 (1977), 335-361. Zbl 0361.35035, MR 0442480, 10.1007/BF00250432
Reference: [11] Galewski, M., Smejda, J.: On variational methods for nonlinear difference equations.J. Comput. Appl. Math. 233 (2010), 2985-2993. Zbl 1187.39006, MR 2592272, 10.1016/j.cam.2009.11.044
Reference: [12] Hupkes, H. J., Vleck, E. S. Van: Negative diffusion and traveling waves in high dimensional lattice systems.SIAM J. Math. Anal. 45 (2013), 1068-1135. Zbl 1301.34098, MR 3049651, 10.1137/120880628
Reference: [13] Hupkes, H. J., Vleck, E. S. Van: Travelling waves for complete discretizations of reaction diffusion systems.J. Dyn. Differ. Equations 28 (2016), 955-1006. Zbl 1353.34094, MR 3537361, 10.1007/s10884-014-9423-9
Reference: [14] Keener, J. P.: Propagation and its failure in coupled systems of discrete excitable cells.SIAM J. Appl. Math. 47 (1987), 556-572. Zbl 0649.34019, MR 0889639, 10.1137/0147038
Reference: [15] Mallet-Paret, J.: The global structure of traveling waves in spatially discrete dynamical systems.J. Dyn. Differ. Equations 11 (1999), 49-127. Zbl 0921.34046, MR 1680459, 10.1023/A:1021841618074
Reference: [16] Bisci, G. Molica, Repovš, D.: On some variational algebraic problems.Adv. Nonlinear Anal. 2 (2013), 127-146. Zbl 1273.39003, MR 3055530, 10.1515/anona-2012-0028
Reference: [17] Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon.Proc. IRE 50 (1962), 2061-2070. 10.1109/jrproc.1962.288235
Reference: [18] Otta, J., Stehlík, P.: Multiplicity of solutions for discrete problems with double-well potentials.Electron. J. Differ. Equ. 2013 (2013), 14 pages. Zbl 1287.39008, MR 3104962
Reference: [19] Pötzsche, C.: Geometric Theory of Discrete Nonautonomous Dynamical Systems.Lecture Notes in Mathematics 2002, Springer, Berlin (2010). Zbl 1247.37003, MR 2680867, 10.1007/978-3-642-14258-1
Reference: [20] Rabinowitz, P. H.: Some minimax theorems and applications to nonlinear partial differential equations.Nonlinear Analysis Academic Press, New York (1978), 161-177. Zbl 0466.58015, MR 0501092, 10.1016/b978-0-12-165550-1.50016-1
Reference: [21] Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations.CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence (1986). Zbl 0609.58002, MR 0845785, 10.1090/cbms/065
Reference: [22] Slavík, A.: Invariant regions for systems of lattice reaction-diffusion equations.J. Differ. Equations 263 (2017), 7601-7626. Zbl 06782926, MR 3705693, 10.1016/j.jde.2017.08.019
Reference: [23] Slavík, A., Stehlík, P.: Dynamic diffusion-type equations on discrete-space domains.J. Math. Anal. Appl. 427 (2015), 525-545. Zbl 1338.35449, MR 3318214, 10.1016/j.jmaa.2015.02.056
Reference: [24] Stehlík, P.: Exponential number of stationary solutions for Nagumo equations on graphs.J. Math. Anal. Appl. 455 (2017), 1749-1764. Zbl 06759300, MR 3671252, 10.1016/j.jmaa.2017.06.075
Reference: [25] Stehlík, P., Volek, J.: Maximum principles for discrete and semidiscrete reaction-diffusion equation.Discrete Dyn. Nat. Soc. 2015 (2015), Article ID 791304, 13 pages. MR 3407064, 10.1155/2015/791304
Reference: [26] Stehlík, P., Volek, J.: Variational methods and implicit discrete Nagumo equation.J. Math. Anal. Appl. 438 (2016), 643-656. Zbl 1334.35134, MR 3466056, 10.1016/j.jmaa.2016.02.009
Reference: [27] Volek, J.: Landesman-Lazer conditions for difference equations involving sublinear perturbations.J. Difference Equ. Appl. 22 (2016), 1698-1719. Zbl 1361.39003, MR 3590409, 10.1080/10236198.2016.1234617
Reference: [28] Volek, J.: Multiple critical points of saddle geometry functionals.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170 (2018), 238-257. Zbl 1386.49006, MR 3765563, 10.1016/j.na.2018.01.008
Reference: [29] Zinner, B.: Existence of traveling wavefront solutions for the discrete Nagumo equation.J. Differ. Equations 96 (1992), 1-27. Zbl 0752.34007, MR 1153307, 10.1016/0022-0396(92)90142-A
.

Files

Files Size Format View
AplMat_64-2019-2_4.pdf 454.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo