Previous |  Up |  Next

Article

Title: On the effect of numerical integration in the finite element solution of an elliptic problem with a nonlinear Newton boundary condition (English)
Author: Bartoš, Ondřej
Author: Feistauer, Miloslav
Author: Roskovec, Filip
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 2
Year: 2019
Pages: 129-167
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the analysis of the finite element method for the numerical solution of an elliptic boundary value problem with a nonlinear Newton boundary condition in a two-dimensional polygonal domain. The weak solution loses regularity in a neighbourhood of boundary singularities, which may be at corners or at roots of the weak solution on edges. The main attention is paid to the study of error estimates. It turns out that the order of convergence is not dampened by the nonlinearity if the weak solution is nonzero on a large part of the boundary. If the weak solution is zero on the whole boundary, the nonlinearity only slows down the convergence of the function values but not the convergence of the gradient. The same analysis is carried out for approximate solutions obtained by numerical integration. The theoretical results are verified by numerical experiments.\looseness -1 (English)
Keyword: elliptic equation
Keyword: nonlinear Newton boundary condition
Keyword: weak solution
Keyword: finite element discretization
Keyword: numerical integration
Keyword: error estimation
Keyword: effect of numerical integration
MSC: 65D30
MSC: 65N15
MSC: 65N30
idZBL: Zbl 07088735
idMR: MR3936966
DOI: 10.21136/AM.2019.0192-18
.
Date available: 2019-05-07T09:08:54Z
Last updated: 2021-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147665
.
Reference: [1] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, G. N. Wells: The FEniCS Project Version 1.5.Archive of Numerical Software 3 (2015), 9-23. 10.11588/ans.2015.100.20553
Reference: [2] Bialecki, R., Nowak, A. J.: Boundary value problems in heat conduction with nonlinear material and nonlinear boundary conditions.Appl. Math. Modelling 5 (1981), 417-421. Zbl 0475.65078, 10.1016/S0307-904X(81)80024-8
Reference: [3] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North Holland, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/S0168-2024(08)70178-4
Reference: [4] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow.Springer Series in Computational Mathematics 48, Springer, Cham (2015). Zbl 1401.76003, MR 3363720, 10.1007/978-3-319-19267-3
Reference: [5] J. Douglas, Jr., T. Dupont: Galerkin methods for parabolic equations with nonlinear boundary conditions.Numer. Math. 20 (1973), 213-237. Zbl 0234.65096, MR 0319379, 10.1007/BF01436565
Reference: [6] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19, American Mathematical Society, Providence (2010). Zbl 1194.35001, MR 2597943, 10.1090/gsm/019
Reference: [7] Feistauer, M., Kalis, H., Rokyta, M.: Mathematical modelling of an electrolysis process.Commentat. Math. Univ. Carol. 30 (1989), 465-477. Zbl 0704.35021, MR 1031864
Reference: [8] Feistauer, M., Najzar, K.: Finite element approximation of a problem with a nonlinear Newton boundary condition.Numer. Math. 78 (1998), 403-425. Zbl 0888.65118, MR 1603350, 10.1007/s002110050318
Reference: [9] Feistauer, M., Najzar, K., Sobotíková, V.: Error estimates for the finite element solution of elliptic problems with nonlinear Newton boundary conditions.Numer. Funct. Anal. Optimization 20 (1999), 835-851. Zbl 0947.65116, MR 1728186, 10.1080/01630569908816927
Reference: [10] Feistauer, M., Roskovec, F., Sändig, A.-M.: Discontinuous Galerkin method for an elliptic problem with nonlinear Newton boundary conditions in a polygon.IMA J. Numer. Anal. 39 (2019), (423-453). MR 3903559, 10.1093/imanum/drx070
Reference: [11] Fornberg, B.: A Practical Guide to Pseudospectral Methods.Cambridge Monographs on Applied and Computational Mathematics 1, Cambridge University Press, Cambridge (1996). Zbl 0844.65084, MR 1386891, 10.1017/CBO9780511626357
Reference: [12] Franců, J.: Monotone operators. A survey directed to applications to differential equations.Appl. Mat. 35 (1990), 257-301. Zbl 0724.47025, MR 1065003
Reference: [13] Ganesh, M., Graham, I. G., Sivaloganathan, J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity.SIAM J. Numer. Anal. 31 (1994), 1378-1414. Zbl 0815.41008, MR 1293521, 10.1137/0731072
Reference: [14] Ganesh, M., Steinbach, O.: Nonlinear boundary integral equations for harmonic problems.J. Integral Equations Appl. 11 (1999), 437-459. Zbl 0974.65112, MR 1738277, 10.1216/jiea/1181074294
Reference: [15] Ganesh, M., Steinbach, O.: Boundary element methods for potential problems with nonlinear boundary conditions.Math. Comput. 70 (2001), 1031-1042. Zbl 0971.65107, MR 1826575, 10.1090/S0025-5718-00-01266-7
Reference: [16] Grisvard, P.: Elliptic Problems in Nonsmooth Domains.Monographs and Studies in Mathematics 24, Pitman Publishing, Boston (1985). Zbl 0695.35060, MR 0775683, 10.1137/1.9781611972030
Reference: [17] Harriman, K., Houston, P., Senior, B., Süli, E.: $hp$-version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form.Recent Advances in Scientific Computing and Partial Differential Equations 2002 S. Y. Cheng et al. Contemp. Math. 330; American Mathematical Society, Providence (2003), 89-119. Zbl 1037.65117, MR 2011714, 10.1090/conm/330
Reference: [18] Hesthaven, J. S.: From electrostatics to almost optimal nodal sets for polynomial interpolation in a simplex.SIAM J. Numer. Anal. 35 (1998), 655-676. Zbl 0933.41004, MR 1618874, 10.1137/S003614299630587X
Reference: [19] Křížek, M., Liu, L., Neittaanmäki, P.: Finite element analysis of a nonlinear elliptic problem with a pure radiation condition.Applied Nonlinear Analysis A. Sequeira et al. Kluwer Academic/Plenum Publishers, New York (1999), 271-280. Zbl 0953.65081, MR 1727454, 10.1007/0-306-47096-9_19
Reference: [20] Liu, L., Křížek, M.: Finite element analysis of a radiation heat transfer problem.J. Comput. Math. 16 (1998), 327-336. Zbl 0919.65067, MR 1640963
Reference: [21] Moreau, R., Ewans, J. W.: An analysis of the hydrodynamics of aluminum reduction cells.J. Electrochem. Soc. 31 (1984), 2251-2259. 10.1149/1.2115235
Reference: [22] Powell, M. J. D.: Approximation Theory and Methods.Cambridge University Press, Cambridge (1981). Zbl 0453.41001, MR 0604014, 10.1017/cbo9781139171502
Reference: [23] Rack, H.-J., Vajda, R.: Optimal cubic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant.Stud. Univ. Babeş-Bolyai, Math. 60 (2015), 151-171. Zbl 1374.05134, MR 3355978
Reference: [24] Roubíček, T.: A finite-element approximation of Stefan problems in heterogeneous media.Free Boundary Value Problems 1989 Int. Ser. Numer. Math. 95, Birkhäuser, Basel (1990), 267-275. Zbl 0721.65081, MR 1111033, 10.1007/978-3-0348-7301-7_16
Reference: [25] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157
.

Files

Files Size Format View
AplMat_64-2019-2_3.pdf 880.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo