Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
set theory of the reals; Cichoń's diagram; forcing; compact cardinal
Summary:
It is consistent that $$ \aleph_1 < {\rm add}{(\mathcal N)}< {\rm add}{(\mathcal M)}= \mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} < {\rm cov}{(\mathcal M)} = 2^{\aleph_0}. $$ Assuming four strongly compact cardinals, it is consistent that \begin{align*} \aleph_1 &< {\rm add}{(\mathcal N)} < {\rm add}{(\mathcal M)} =\mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} &<{\rm cov}{(\mathcal M)}< {\rm non}{(\mathcal N)} < {\rm cof}{(\mathcal M)}= \mathfrak{d} < {\rm cof}{(\mathcal N)} < 2^{\aleph_0}. \end{align*}
References:
[1] Bartoszyński T.: Combinatorial aspects of measure and category. Fund. Math. 127 (1987), no. 3, 225–239. DOI 10.4064/fm-127-3-225-239 | MR 0917147
[2] Bartoszyński T., Judah H.: Set Theory, On the Structure of the Real Line. A. K. Peters, Wellesley, 1995. MR 1350295
[3] Brendle J.: Larger cardinals in Cichoń's diagram. J. Symbolic Logic 56 (1991), no. 3, 795–810. DOI 10.2178/jsl/1183743728 | MR 1129144
[4] Brendle J., Mejía D. A.: Rothberger gaps in fragmented ideals. Fund. Math. 227 (2014), no. 1, 35–68. DOI 10.4064/fm227-1-4 | MR 3247032
[5] Cardona M. A., Mejía D. A.: On cardinal characteristics of Yorioka ideals. available at arXiv:1703.08634 [math.LO] (2018), 35 pages.
[6] Engelking R., Karłowicz M.: Some theorems of set theory and their topological consequences. Fund. Math. 57 (1965), 275–285. DOI 10.4064/fm-57-3-275-285 | MR 0196693
[7] Goldstern M., Kellner J., Shelah S.: Cichoń's maximum. available at arXiv:1708.03691 [math.LO] (2018), 21 pages.
[8] Goldstern M., Mejía D. A., Shelah S.: The left side of Cichoń's diagram. Proc. Amer. Math. Soc. 144 (2016), no. 9, 4025–4042. DOI 10.1090/proc/13161 | MR 3513558
[9] Horowitz H., Shelah S.: Saccharinity with ccc. available at arXiv:1610.02706 [math.LO] (2016), 23 pages.
[10] Judah H., Shelah S.: The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing). J. Symbolic Logic 55 (1990), no. 3, 909–927. DOI 10.2307/2274464 | MR 1071305
[11] Kamburelis A.: Iterations of Boolean algebras with measure. Arch. Math. Logic 29 (1989), no. 1, 21–28. DOI 10.1007/BF01630808 | MR 1022984
[12] Kellner J., Tănasia A. R., Tonti F. E.: Compact cardinals and eight values in Cichoń's diagram. J. Symb. Log. 83 (2018), no. 2, 790–803. DOI 10.1017/jsl.2018.17 | MR 3835089
[13] Mejía D. A.: Matrix iterations and Cichon's diagram. Arch. Math. Logic 52 (2013), no. 3–4, 261–278. DOI 10.1007/s00153-012-0315-6 | MR 3047455
[14] Miller A. W.: A characterization of the least cardinal for which the Baire category theorem fails. Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. DOI 10.1090/S0002-9939-1982-0671224-2 | MR 0671224
[15] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals. Arch. Math. Logic 53 (2014), no. 1–2, 43–56. DOI 10.1007/s00153-013-0354-7 | MR 3151397
[16] Shelah S.: Covering of the null ideal may have countable cofinality. Fund. Math. 166 (2000), no. 1–2, 109–136. MR 1804707 | Zbl 0962.03046
Partner of
EuDML logo