Previous |  Up |  Next

Article

Title: Another ordering of the ten cardinal characteristics in Cichoń's diagram (English)
Author: Kellner, Jakob
Author: Shelah, Saharon
Author: Tănasie, Anda R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 1
Year: 2019
Pages: 61-95
Summary lang: English
.
Category: math
.
Summary: It is consistent that $$ \aleph_1 < {\rm add}{(\mathcal N)}< {\rm add}{(\mathcal M)}= \mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} < {\rm cov}{(\mathcal M)} = 2^{\aleph_0}. $$ Assuming four strongly compact cardinals, it is consistent that \begin{align*} \aleph_1 &< {\rm add}{(\mathcal N)} < {\rm add}{(\mathcal M)} =\mathfrak{b} < {\rm cov} {(\mathcal N)} < {\rm non}{(\mathcal M)} &<{\rm cov}{(\mathcal M)}< {\rm non}{(\mathcal N)} < {\rm cof}{(\mathcal M)}= \mathfrak{d} < {\rm cof}{(\mathcal N)} < 2^{\aleph_0}. \end{align*} (English)
Keyword: set theory of the reals
Keyword: Cichoń's diagram
Keyword: forcing
Keyword: compact cardinal
MSC: 03E17
idZBL: Zbl 07088826
idMR: MR3946665
DOI: 10.14712/1213-7243.2015.273
.
Date available: 2019-05-13T07:47:34Z
Last updated: 2021-04-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147671
.
Reference: [1] Bartoszyński T.: Combinatorial aspects of measure and category.Fund. Math. 127 (1987), no. 3, 225–239. MR 0917147, 10.4064/fm-127-3-225-239
Reference: [2] Bartoszyński T., Judah H.: Set Theory, On the Structure of the Real Line.A. K. Peters, Wellesley, 1995. MR 1350295
Reference: [3] Brendle J.: Larger cardinals in Cichoń's diagram.J. Symbolic Logic 56 (1991), no. 3, 795–810. MR 1129144, 10.2178/jsl/1183743728
Reference: [4] Brendle J., Mejía D. A.: Rothberger gaps in fragmented ideals.Fund. Math. 227 (2014), no. 1, 35–68. MR 3247032, 10.4064/fm227-1-4
Reference: [5] Cardona M. A., Mejía D. A.: On cardinal characteristics of Yorioka ideals.available at arXiv:1703.08634 [math.LO] (2018), 35 pages.
Reference: [6] Engelking R., Karłowicz M.: Some theorems of set theory and their topological consequences.Fund. Math. 57 (1965), 275–285. MR 0196693, 10.4064/fm-57-3-275-285
Reference: [7] Goldstern M., Kellner J., Shelah S.: Cichoń's maximum.available at arXiv:1708.03691 [math.LO] (2018), 21 pages.
Reference: [8] Goldstern M., Mejía D. A., Shelah S.: The left side of Cichoń's diagram.Proc. Amer. Math. Soc. 144 (2016), no. 9, 4025–4042. MR 3513558, 10.1090/proc/13161
Reference: [9] Horowitz H., Shelah S.: Saccharinity with ccc.available at arXiv:1610.02706 [math.LO] (2016), 23 pages.
Reference: [10] Judah H., Shelah S.: The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing).J. Symbolic Logic 55 (1990), no. 3, 909–927. MR 1071305, 10.2307/2274464
Reference: [11] Kamburelis A.: Iterations of Boolean algebras with measure.Arch. Math. Logic 29 (1989), no. 1, 21–28. MR 1022984, 10.1007/BF01630808
Reference: [12] Kellner J., Tănasia A. R., Tonti F. E.: Compact cardinals and eight values in Cichoń's diagram.J. Symb. Log. 83 (2018), no. 2, 790–803. MR 3835089, 10.1017/jsl.2018.17
Reference: [13] Mejía D. A.: Matrix iterations and Cichon's diagram.Arch. Math. Logic 52 (2013), no. 3–4, 261–278. MR 3047455, 10.1007/s00153-012-0315-6
Reference: [14] Miller A. W.: A characterization of the least cardinal for which the Baire category theorem fails.Proc. Amer. Math. Soc. 86 (1982), no. 3, 498–502. MR 0671224, 10.1090/S0002-9939-1982-0671224-2
Reference: [15] Osuga N., Kamo S.: Many different covering numbers of Yorioka's ideals.Arch. Math. Logic 53 (2014), no. 1–2, 43–56. MR 3151397, 10.1007/s00153-013-0354-7
Reference: [16] Shelah S.: Covering of the null ideal may have countable cofinality.Fund. Math. 166 (2000), no. 1–2, 109–136. Zbl 0962.03046, MR 1804707
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-1_5.pdf 518.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo