Previous |  Up |  Next

Article

Title: Towards the properties of fuzzy multiplication for fuzzy numbers (English)
Author: Bica, Alexandru Mihai
Author: Fechete, Dorina
Author: Fechete, Ioan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 44-62
Summary lang: English
.
Category: math
.
Summary: In this paper, by using a new representation of fuzzy numbers, namely the ecart-representation, we investigate the possibility to consider such multiplication between fuzzy numbers that is fully distributive. The algebraic and topological properties of the obtained semiring are studied making a comparison with the properties of the existing fuzzy multiplication operations. The properties of the generated fuzzy power are investigated. (English)
Keyword: fuzzy number
Keyword: semiring
Keyword: fuzzy product distributivity
MSC: 03E72
idZBL: Zbl 07088878
idMR: MR3935414
DOI: 10.14736/kyb-2019-1-0044
.
Date available: 2019-05-07T11:06:11Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147705
.
Reference: [1] Allen, P. J.: A fundamental theorem of homomorphisms for semirings..Proc. Amer. Math. Soc. 21 (1969), 412-416. MR 0237575, 10.1090/s0002-9939-1969-0237575-4
Reference: [2] Ban, A. I., Bede, B.: Properties of the cross product of fuzzy numbers..J. Fuzzy Math. 14 (2006), 513-531. MR 2258422
Reference: [3] Bede, B.: Mathematics of Fuzzy Sets and Fuzzy Logic..Springer-Verlag, Berlin, Heidelberg 2013. Zbl 1271.03001, MR 3024762
Reference: [4] Bede, B., Fodor, J.: Product type operations between fuzzy numbers and their applications in geology..Acta Polytechn. Hungar. 3 (2006), 123-139.
Reference: [5] Chou, Ch.-Ch.: The canonical representation of multiplication operation on triangular fuzzy numbers..Comput. Math. Appl. 45 (2003), 1601-1610. MR 1993230, 10.1016/s0898-1221(03)00139-1
Reference: [6] Coroianu, L.: Necessary and sufficient conditions for the equality of the interactive and non-interactive sums of two fuzzy numbers..Fuzzy Sets Syst. 283 (2016), 40-55. MR 3421857, 10.1016/j.fss.2014.10.026
Reference: [7] Coroianu, L., Fuller, R.: Necessary and sufficient conditions for the equality of interactive and non-interactive extensions of continuous functions..Fuzzy Sets Syst. 331 (2018), 116-130. MR 3733272, 10.1016/j.fss.2017.07.023
Reference: [8] Bica, A. M.: Algebraic structures for fuzzy numbers from categorial point of view..Soft Computing 11 (2007), 1099-1105. Zbl 1125.03039, 10.1007/s00500-007-0167-x
Reference: [9] Bica, A. M.: One-sided fuzzy numbers and applications to integral equations from epidemiology..Fuzzy Sets Syst. 219 (2013), 27-48. Zbl 1276.92098, MR 3035732, 10.1016/j.fss.2012.08.002
Reference: [10] Bica, A. M.: The middle-parametric representation of fuzzy numbers and applications to fuzzy interpolation..Int. J. Approximate Reasoning 68 (2016), 27-44. MR 3430181, 10.1016/j.ijar.2015.10.001
Reference: [11] Delgado, M., Vila, M. A., Voxman, W.: On a canonical representation of fuzzy numbers..Fuzzy Sets Syst. 93 (1998), 125-135. Zbl 0916.04004, MR 1601513, 10.1016/s0165-0114(96)00144-3
Reference: [12] Dubois, D., Prade, H.: Operations on fuzzy numbers..Int. J. Syst. Sci. 9 (1978), 613-626. Zbl 0383.94045, MR 0491199, 10.1080/00207727808941724
Reference: [13] Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications..Academic Press, New York 1980. Zbl 0444.94049, MR 0589341
Reference: [14] Atani, R. Ebrahimi, Atani, S. Ebrahimi: Ideal theory in commutative semirings..Bul. Acad. Ştiinţe Repub. Mold. Mat. 57 (2008), 2, 14-23. MR 2435797
Reference: [15] Atani, R. Ebrahimi: The ideal theory in quotients of commutative semirings..Glasnik Matematicki 42 (2007), 301-308. MR 2376908, 10.3336/gm.42.2.05
Reference: [16] Goetschel, R., Voxman, W.: Elementary fuzzy calculus..Fuzzy Sets Syst. 18 (1986), 31-43. Zbl 0626.26014, MR 0825618, 10.1016/0165-0114(86)90026-6
Reference: [17] Golan, J. S.: Semirings and their Applications..Kluwer Academic Publishers, Dordrecht 1999. MR 1746739, 10.1007/978-94-015-9333-5\_21
Reference: [18] Guerra, M. L., Stefanini, L.: Crisp profile symmetric decomposition of fuzzy numbers..Appl. Math. Sci. 10 (2016), 1373-1389. 10.12988/ams.2016.59598
Reference: [19] Hanss, M.: Applied Fuzzy Arithmetic - An Introduction with Engineering Applications..Springer-Verlag, Berlin 2005. 10.1007/b138914
Reference: [20] Kolesárová, A., Vivona, D.: Entropy of T-sums and T-products of L-R fuzzy numbers..Kybernetika 37 (2001), 2, 127-145. MR 1839223
Reference: [21] Ma, M., Friedman, M., Kandel, A.: A new fuzzy arithmetic..Fuzzy Sets Syst. 108 (1999), 83-90. Zbl 0937.03059, MR 1714662, 10.1016/s0165-0114(97)00310-2
Reference: [22] Mareš, M.: Multiplication of fuzzy quantities..Kybernetika 28 (1992), 5, 337-356. Zbl 0786.04006, MR 1197719
Reference: [23] Mareš, M.: Brief note on distributivity of triangular fuzzy numbers..Kybernetika 31 (1995), 5, 451-457. Zbl 0856.04009, MR 1361306
Reference: [24] Mareš, M.: Fuzzy zero, algebraic equivalence: yes or no?.Kybernetika 32 (1996), 4, 343-351. Zbl 0884.04004, MR 1420127
Reference: [25] Mareš, M.: Weak arithmetics of fuzzy numbers..Fuzzy Sets Syst. 91 (1997), 143-153. MR 1480041, 10.1016/s0165-0114(97)00136-x
Reference: [26] Markov, S.: On quasilinear spaces of convex bodies and intervals..J. Comput. Appl. Math. 162 (2004), 93-112. MR 2043500, 10.1016/j.cam.2003.08.016
Reference: [27] Markov, S.: On directed interval arithmetic and its applications..J. Universal Computer Sci. 7 (1995), 514-526. MR 1403710, 10.1007/978-3-642-80350-5\_43
Reference: [28] Markov, S.: On the algebraic properties of intervals and some applications..Reliable Computing 7 (2001), 113-127. MR 1831373, 10.1023/a:1011418014248
Reference: [29] Mesiar, R., Ribarik, J.: Pan operations structure..Fuzzy Sets Syst. 74 (1995), 365-369. MR 1351585, 10.1016/0165-0114(94)00314-w
Reference: [30] Mizumoto, M., Tanaka, K.: The four operations of arithmetic on fuzzy numbers..Systems Comput. Controls 7 (1976), 5, 73-81. MR 0476531
Reference: [31] Mizumoto, M., Tanaka, K.: Some properties of fuzzy numbers..In: Advances in Fuzzy Set Theory and Applications (M. H. Gupta, R. K. Ragade, and R. R. Yager, eds.), North-Holland, Amsterdam, 1979, pp. 156-164. MR 0558721
Reference: [32] Mordeson, J. N., Nair, P. S.: Fuzzy Mathematics: An Introduction for Engineers and Scientists..Studies in Fuzziness and Soft Computing, Physica-Verlag, Heidelberg, New York 2001. MR 1859718
Reference: [33] Nasseri, S. H., Mahdavi-Amiri, N.: Some duality results on linear programming problems with symmetric fuzzy numbers..Fuzzy Inf. Eng. 1 (2009), 1, 59-66. 10.1007/s12543-009-0004-2
Reference: [34] Qiu, D., Zhang, W.: Symmetric fuzzy numbers and additive equivalence of fuzzy numbers..Soft Comput. 17 (2013), 1471-1477. 10.1007/s00500-013-1000-3
Reference: [35] Schneider, J.: Arithmetic of fuzzy numbers and intervals-a new perspective with examples..arXiv: 1310.5604 [math.GM] (2016).
Reference: [36] Stefanini, L., Sorini, L., Guerra, M. L.: Parametric representation of fuzzy numbers and application to fuzzy calculus..Fuzzy Sets Syst. 157 (2006), 2423-2455. Zbl 1109.26024, MR 2254174, 10.1016/j.fss.2006.02.002
Reference: [37] Stefanini, L., Guerra, M. L.: On fuzzy arithmetic operations: some properties and distributive approximations..Int. J. Appl. Math. 19 (2006), 171-199. MR 2266345
Reference: [38] Stupňanová, A.: A probabilistic approach to the arithmetics of fuzzy numbers..Fuzzy Sets Syst. 264 (2015), 64-75. MR 3303664, 10.1016/j.fss.2014.08.013
Reference: [39] Taleshian, A., Rezvani, S.: Multiplication operation on trapezoidal fuzzy numbers..J. Phys. Sci. 15 (2011), 17-26. MR 2881855
Reference: [40] Zavadskas, E. K., Antucheviciene, J., Hajiagha, S. H. Razavi, Hashemi, S. Sadat: Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF)..Appl. Soft Comput. 24 (2014), 1013-1021. 10.1016/j.asoc.2014.08.031
.

Files

Files Size Format View
Kybernetika_55-2019-1_4.pdf 564.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo