Previous |  Up |  Next

Article

Title: Synchronization of fractional chaotic complex networks with delays (English)
Author: Hu, Jian-Bing
Author: Wei, Hua
Author: Feng, Ye-Feng
Author: Yang, Xiao-Bo
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 1
Year: 2019
Pages: 203-215
Summary lang: English
.
Category: math
.
Summary: The synchronization of fractional-order complex networks with delay is investigated in this paper. By constructing a novel Lyapunov-Krasovskii function $V$ and taking integer derivative instead of fractional derivative of the function, a sufficient criterion is obtained in the form of linear matrix inequalities to realize synchronizing complex dynamical networks. Finally, a numerical example is shown to illustrate the feasibility and effectiveness of the proposed method. (English)
Keyword: fractional complex networks
Keyword: delays
Keyword: Lyapunov-Krasovskii theorem
Keyword: synchronization
MSC: 34D06
MSC: 93D05
idZBL: Zbl 07088886
idMR: MR3935422
DOI: 10.14736/kyb-2019-1-0203
.
Date available: 2019-05-07T11:20:41Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147713
.
Reference: [1] Ahmad, B., Ntouyas, S. K., Tariboon, J., Alsaedi, A., Alsulami, H. H.: Impulsive fractional q-integro-difference equations with separated boundary conditions..Appl. Math. Comput. 281 (2016), 199-213. MR 3466095, 10.1016/j.amc.2016.01.051
Reference: [2] An, F., Gao, X. Y., Guan, J. H., Li, H. J., Liu, Q.: An evolution analysis of executive-based listed company relationships using complex networks..Physica A: Statist. Mechanics and Its Appl. 447 (2016), 276-285. 10.1016/j.physa.2015.12.050
Reference: [3] Aguila-Camacho, N., Duarte-Mermoud, M. A., Gallegos, J. A.: Lyapunov functions for fractional order systems..Commu. Nonlinear Science Numer. Simul. 19 (2014), 2951-2957. MR 3182869, 10.1016/j.cnsns.2014.01.022
Reference: [4] Baleanu, D., Ranjbar, A., Sadati, S. J., Delavari, R. H., Abdeljawad, T., Gejji, V.: Lyapunov-Krasovskii stability theorem for fractional systems with delay..Romanian J. Phys. 56 (2011), 636-643. MR 2821032
Reference: [5] Chen, Y., Lü, J.: Delay-induced discrete-time consensus..Automatica 85 (2017), 356-361. MR 3712878, 10.1016/j.automatica.2017.07.059
Reference: [6] Chen, L. P., Pan, W., Wu, R. C., Machado, J. A. T., Lopes, A. M.: Design and implementation of grid multi-scroll fractional-order chaotic attractors..Chaos 26 (2016), 8, 084303. MR 3522604, 10.1063/1.4958717
Reference: [7] Dai, H., Si, G. Q., Jia, L. X., Zhang, Y. B.: Adaptive generalized function matrix projective lag synchronization between fractional-order and integer-order complex networks with delayed coupling and different dimensions..Physica Scripta 88 (2013), 5, 055006. 10.1088/0031-8949/88/05/055006
Reference: [8] David, S. A., Machado, J. A. T., Quintino, D. D., Balthazar, J. M.: Partial chaos suppression in a fractional order macroeconomic model..Math. Computers Simul. 122 (2016), 55-68. MR 3436941, 10.1016/j.matcom.2015.11.004
Reference: [9] Hu, J. B., Lu, G. P., Zhao, L. D.: Synchronization of fractional chaotic complex networks with distributed delays..Nonlinear dynamics 83 (2016), 1101-1108. MR 3435929, 10.1007/s11071-015-2390-9
Reference: [10] Hu, J. B., Wei, H., Zhao, L. D.: Synchronization of fractional-order chaotic systems with multiple delays by a new approach..Kybernetika 51 (2015), 1068-1083. MR 3453686, 10.14736/kyb-2015-6-1068
Reference: [11] Li, B. C.: Pinning adaptive hybrid synchronization of two general complex dynamical networks with mixed coupling..Appl. Math. Modell. 40 (2016), 2983-2998. MR 3454505, 10.1016/j.apm.2015.09.092
Reference: [12] Li, Y., Wu, X., Lu, J. A., Lü, J.: Synchronizability of duplex networks..IEEE Trans. Circuits Systems II Express Briefs 63 (2016), 206-210. 10.1109/tcsii.2015.2468924
Reference: [13] Liang, S., Wu, R. C., Chen, L. P.: Adaptive pinning synchronization in fractional-order uncertain complex dynamical networks with delay..Physica a-Statistical Mechanics and Its Applications 444(2016), 49-62. MR 3428092, 10.1016/j.physa.2015.10.011
Reference: [14] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems..Science China Technol. Sci. 59 (2016), 22-32. 10.1007/s11431-015-5989-7
Reference: [15] Liu, K., Zhu, H., Lü, J.: Cooperative Stabilization of a class of LTI plants with distributed observers..IEEE Trans. Circuits Systems I Regular Papers 64(2017), 1891-1902. MR 3671833, 10.1109/tcsi.2017.2675922
Reference: [16] Rivero, M., Rogosin, S. V., Machado, J. A. T., Trujillo, J. J.: Stability of fractional order systems..Math. Problems Engrg. 2013 (2013), 1-14. MR 3062648
Reference: [17] Spasic, D. T., Kovincic, N. I., Dankuc, D. V.: A new material identification pattern for the fractional kelvin-zener model describing biomaterials and human tissues..Comm. Nonlinear Sci. Numer. Simul. 37 (2016), 193-199. MR 3466784, 10.1016/j.cnsns.2016.01.004
Reference: [18] Tang, H. W., Chen, L., Lu, J. A., Tse, C. K.: Adaptive synchronization between two complex networks with nonidentical topological structures..Physica a-Statistical Mechanics and Its Applications 387 (2008) 5623-5630. 10.1016/j.physa.2008.05.047
Reference: [19] Tang, Y., Gao, H. J., Kurths, J.: Distributed robust synchronization of dynamical networks with stochastic coupling..IEEE Trans. Circuits Systems I-Regular Papers, 61 (2014), 1508-1519. MR 3200565, 10.1109/tcsi.2013.2285699
Reference: [20] Uncini, A., Piazza, F.: Blind signal processing by complex domain adaptive spline neural networks..IEEE Trans. Neural Networks 14 (2003), 399-412. 10.1109/tnn.2003.809411
Reference: [21] Wang, Y., Li, T. Z.: Synchronization of fractional order complex dynamical networks..Physica a-Statistical Mechanics and Its Applications 428 (2015), 1-12. MR 3322873, 10.1016/j.physa.2015.02.051
Reference: [22] Wang, J. W., Ma, Q. H., Chen, A. M., Liang, Z. P.: Pinning synchronization of fractional-order complex networks with lipschitz-type nonlinear dynamics..ISA Trans. 57 (2015), 111-116. 10.1016/j.isatra.2015.02.002
Reference: [23] Wang, F., Yang, Y. Q., Hu, A. H., Xu, X. Y.: Exponential synchronization of fractional-order complex networks via pinning impulsive control..Nonlinear Dynamics 82 (2015), 1979-1987. MR 3422995, 10.1007/s11071-015-2292-x
Reference: [24] Wang, Z., Huang, X., Li, Y. X., Song, X. N.: A new image encryption algorithm based on the fractional-order hyperchaotic lorenz system..Chinese Physics B 22 (2013), 1, 010504. 10.1088/1674-1056/22/1/010504
Reference: [25] Wang, F., Yang, Y. Q., Hu, M. F., Xu, X. Y.: Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control..Physica a-Statistical Mechanics and Its Applications 434 (2015), 134-143. MR 3349715, 10.1016/j.physa.2015.03.089
Reference: [26] Wu, G. C., Baleanu, D.: Discrete chaos in fractional delayed logistic maps..Nonlinear Dynamics 80 (2015), 1697-1703. MR 3343425, 10.1007/s11071-014-1250-3
Reference: [27] Wu, G. C., Baleanu, D., Deng, Z. G., Zeng, S. D.: Lattice fractional diffusion equation in terms of a riesz-caputo difference..Physica a-Statistical Mechanics and Its Applications 438 (2015), 335-339. MR 3384291, 10.1016/j.physa.2015.06.024
Reference: [28] Yi, J. W., Wang, Y. W., Xiao, J. W., Huang, Y. H.: Synchronisation of complex dynamical networks with additive stochastic time-varying delays..Int. J. Systems Sci. 47 (2016), 1221-1229. MR 3441585, 10.1080/00207721.2014.919426
Reference: [29] Zhang, W. B., Tang, Y., Miao, Q. Y., Fang, J. A.: Synchronization of stochastic dynamical networks under impulsive control with time delays..IEEE Trans. Neural Networks Learning Systems 25 (2014), 1758-1768. 10.1109/tnnls.2013.2294727
Reference: [30] Zhao, L. D., Hu, J. B., Fang, J. A., Cui, W. X., Xu, Y. L., Wang, X.: Adaptive synchronization and parameter identification of chaotic system with unknown parameters and mixed delays based on a special matrix structure..ISA Trans. 52 (2013),738-743. 10.1016/j.isatra.2013.07.001
Reference: [31] Zhou, W. N., Dai, A. D., Yang, J., Liu, H. S., Liu, X. L.: Exponential synchronization of markovian jumping complex dynamical networks with randomly occurring parameter uncertainties..Nonlinear Dynamics 78(2014), 15-27. MR 3266422, 10.1007/s11071-014-1418-x
Reference: [32] Zhou, Y., Ionescu, C., Machado, J. A. T.: Fractional dynamics and its applications..Nonlinear Dynamics 80 (2015), 1661-1664. MR 3343421, 10.1007/s11071-015-2069-2
Reference: [33] Zhou, J., Chen, J., Lu, J. A., Lü, J.: On applicability of auxiliary system approach to detect generalized synchronization in complex networks..IEEE Trans. Automat. Control 62 (2017), 3468-3473. MR 3669467, 10.1109/tac.2016.2615679
.

Files

Files Size Format View
Kybernetika_55-2019-1_12.pdf 582.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo