Previous |  Up |  Next

Article

Title: On the spectrum of Robin Laplacian in a planar waveguide (English)
Author: Rossini, Alex Ferreira
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 2
Year: 2019
Pages: 485-501
Summary lang: English
.
Category: math
.
Summary: We consider the Laplace operator in a planar waveguide, i.e. an infinite two-dimensional straight strip of constant width, with Robin boundary conditions. We study the essential spectrum of the corresponding Laplacian when the boundary coupling function has a limit at infinity. Furthermore, we derive sufficient conditions for the existence of discrete spectrum. (English)
Keyword: planar waveguide
Keyword: discrete spectrum
Keyword: Robin boundary conditions
MSC: 47B25
MSC: 47F05
MSC: 49R05
MSC: 81Q10
idZBL: Zbl 07088801
idMR: MR3959961
DOI: 10.21136/CMJ.2018.0396-17
.
Date available: 2019-05-24T09:01:14Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147741
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957, 10.1016/S0079-8169(08)61376-8
Reference: [2] Borisov, D., Cardone, G.: Planar waveguide with ``twisted'' boundary conditions: Discrete spectrum.J. Math. Phys. 52 (2011), 123513, 24 pages. Zbl 1273.81100, MR 2907657, 10.1063/1.3670875
Reference: [3] Borisov, D., Krejčiřík, D.: $\mathcal P\mathcal T$-symmetric waveguides.Integral Equations Oper. Theory 62 (2008), 489-515. Zbl 1178.35141, MR 2470121, 10.1007/s00020-008-1634-1
Reference: [4] Chenaud, B., Duclos, P., Freitas, P., Krejčiřík, D.: Geometrically induced discrete spectrum in curved tubes.Differ. Geom. Appl. 23 (2005), 95-105. Zbl 1078.81022, MR 2158038, 10.1016/j.difgeo.2005.05.001
Reference: [5] Oliveira, C. R. de: Intermediate Spectral Theory and Quantum Dynamics.Progress in Mathematical Physics 54, Birkhäuser, Basel (2009). Zbl 1165.47001, MR 2723496, 10.1007/978-3-7643-8795-2
Reference: [6] Oliveira, C. R. de, Verri, A. A.: On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes.J. Math. Anal. Appl. 381 (2011), 454-468. Zbl 1220.35101, MR 2796223, 10.1016/j.jmaa.2011.03.022
Reference: [7] Dittrich, J., Kříž, J.: Bound states in straight quantum waveguides with combined boundary conditions.J. Math. Phys. 43 (2002), 3892-3915. Zbl 1060.81019, MR 1915632, 10.1063/1.1491597
Reference: [8] Duclos, P., Exner, P.: Curvature-induced bound states in quantum waveguides in two and three dimensions.Rev. Math. Phys. 7 (1995), 73-102. Zbl 0837.35037, MR 1310767, 10.1142/S0129055X95000062
Reference: [9] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19, AMS, Providence (1998). Zbl 0902.35002, MR 1625845, 10.1090/gsm/019
Reference: [10] Exner, P., Šeba, P.: Bound states in curved quantum waveguides.J. Math. Phys. 30 (1989), 2574-2580. Zbl 0693.46066, MR 1019002, 10.1063/1.528538
Reference: [11] Freitas, P., Krejčiřík, D.: Waveguides with combined Dirichlet and Robin boundary conditions.Math. Phys. Anal. Geom. 9 (2006), 335-352. Zbl 1151.35061, MR 2329432, 10.1007/s11040-007-9015-6
Reference: [12] Goldstone, J., Jaffe, R. L.: Bound states in twisting tubes.Phys. Rev. B. 45 (1992), 14100-14107. 10.1103/PhysRevB.45.14100
Reference: [13] Jílek, M.: Straight quantum waveguide with Robin boundary conditions.SIGMA, Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 108, 12 pages. Zbl 1147.47035, MR 2366914, 10.3842/SIGMA.2007.108
Reference: [14] Krejčiřík, D.: Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions.ESAIM, Control Optim. Calc. Var. 15 (2009), 555-568. Zbl 1173.35618, MR 2542572, 10.1051/cocv:2008035
Reference: [15] Krejčiřík, D., Kříž, J.: On the spectrum of curved planar waveguides.Publ. Res. Inst. Math. Sci. 41 (2005), 757-791. Zbl 1113.35143, MR 2154341, 10.2977/prims/1145475229
Reference: [16] Olendski, O., Mikhailovska, L.: Theory of a curved planar waveguide with Robin boundary conditions.Phys. Rev. E. 81 (2010), 036606. 10.1103/PhysRevE.81.036606
Reference: [17] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators.Academic Press, New York (1978). Zbl 0401.47001, MR 0493421
.

Files

Files Size Format View
CzechMathJ_69-2019-2_17.pdf 330.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo