Previous |  Up |  Next

Article

Title: Existence results for systems of conformable fractional differential equations (English)
Author: Bendouma, Bouharket
Author: Cabada, Alberto
Author: Hammoudi, Ahmed
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 69-82
Summary lang: English
.
Category: math
.
Summary: In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is $L^{1}_{\alpha }$-carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem. (English)
Keyword: conformable fractional calculus
Keyword: conformable fractional differential equations
Keyword: solution-tube
Keyword: Schauder’s fixed-point theorem
Keyword: fractional Sobolev’s spaces
MSC: 26A33
MSC: 34A08
MSC: 34A12
MSC: 34A34
MSC: 34B15
MSC: 34K37
idZBL: Zbl 07088759
idMR: MR3964435
DOI: 10.5817/AM2019-2-69
.
Date available: 2019-06-07T14:46:41Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147746
.
Reference: [1] Abdeljawad, T.: On conformable fractional calculus.J. Comput. Appl. Math. 279 (2015), 57–66. MR 3293309, 10.1016/j.cam.2014.10.016
Reference: [2] Abdeljawad, T., AlHorani, M., Khalil, R.: Conformable fractional semigroups of operators.J. Semigroup Theory Appl. 2015 (2015), 9 pages.
Reference: [3] Anderson, D.R., Avery, R.I.: Fractional-order boundary value problem with Sturm-Liouville boundary conditions.Electronic J. Differential Equ. 2015 (29) (2015), 10 pages. MR 3335759
Reference: [4] Batarfi, H., Losada, J., Nieto, J.J., Shammakh, W.: Three-point boundary value problems for conformable fractional differential equations.J. Function Spaces 2015 (2015), 6 pages. MR 3326681
Reference: [5] Bayour, B., Torres, D.F.M.: Existence of solution to a local fractional nonlinear differential equation.J. Comput. Appl. Math. 312 (2016), 127–133. MR 3557866, 10.1016/j.cam.2016.01.014
Reference: [6] Benchohra, M., Cabada, A., Seba, D.: An existence result for nonlinear fractional differential equations on Banach spaces.Boundary Value Problem 2009 (2009), 11 pages. MR 2525581
Reference: [7] Bendouma, B., Cabada, A., Hammoudi, A.: Existence of solutions for conformable fractional problems with nonlinear functional boundary conditions.submitted.
Reference: [8] Benkhettou, N., Hassani, S., Torres, D.F.M.: A conformable fractional calculus on arbitrary time scales.J. King Saud Univ. Sci. 28 (1) (2016), 93–98. 10.1016/j.jksus.2015.05.003
Reference: [9] Cabada, A.: Green’s Functions in the Theory of Ordinary Differential Equations.Springer, New York, 2014. MR 3155625
Reference: [10] Cabada, A., Hamdi, Z.: Nonlinear fractional differential equations with integral boundary value conditions.Appl. Appl. Math. Comput. 228 (2014), 251–257. MR 3151912, 10.1016/j.amc.2013.11.057
Reference: [11] Cabada, A., Hamdi, Z.: Existence results for nonlinear fractional Dirichlet problems on the right side of the first eigenvalue.Georgian Math. J. 24 (1) (2017), 41–53. MR 3607239, 10.1515/gmj-2016-0086
Reference: [12] Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions.J. Math. Anal. Appl. 389 (1) (2012), 403–411. MR 2876506, 10.1016/j.jmaa.2011.11.065
Reference: [13] Chung, W.S.: Fractional Newton mechanics with conformable fractional derivative.J. Comput. Appl. Math. 290 (2015), 150–158. MR 3370399, 10.1016/j.cam.2015.04.049
Reference: [14] Frigon, M., O’Regan, D.: Existence results for initial value problems in Banach spaces.Differ. Equ. Dyn. Syst. 2 (1994), 41–48. MR 1386037
Reference: [15] Frigon, M., O’Regan, D.: Nonlinear first order initial and periodic problems in Banach spaces.Appl. Math. Lett. 10 (1997), 41–46. MR 1458151, 10.1016/S0893-9659(97)00057-8
Reference: [16] Gilbert, H.: Existence theorems for first order equations on time scales with $ \Delta -$Carathédory functions.Adv. Difference Equ. 2010 (2010), 20 pages, Article ID 650827. MR 2747083
Reference: [17] Gökdoǧan, A., Ünal, E., Çelik, E.: Existence and uniqueness theorems for sequential linear conformable fractional differential equations.arXiv preprint, 2015. MR 3527883
Reference: [18] Gözütok, N.Y., Gözütok, U.: Multivariable conformable fractional calculus.math.CA 2017.
Reference: [19] Gulsen, T., Yilmaz, E., Goktas, S.: Conformable fractional Dirac system on time scales.J. Inequ. Appl. 2017 (2017), 1–10. MR 3669797
Reference: [20] Iyiola, O.S., Nwaeze, E.R.: Some new results on the new conformable fractional calculu swith application using D’Alambert approach.Progr. Fract. Differ. Appl. 2 (2) (2016), 115–122. 10.18576/pfda/020204
Reference: [21] Katugampola, U.N.: A new fractional derivative with classical properties.preprint, 2014. MR 3298307
Reference: [22] Khaldi, R., Guezane-Lakoud, A.: Lyapunov inequality for a boundary value problem involving conformable derivative.Progr. Fract. Differ. Appl. 3 (4) (2017), 323–329. 10.18576/pfda/030407
Reference: [23] Khalil, R., Horani, M. Al, Yousef, A., Sababheh, M.: A new definition of fractional derivative.J. Comput. Appl. Math. 264 (2014), 65–70. MR 3164103, 10.1016/j.cam.2014.01.002
Reference: [24] Kilbas, A., Srivastava, M.H., Trujillo, J.J.: Theory and Application of Fractional Differential Equations.vol. 204, North Holland Mathematics Studies, 2006. MR 2218073
Reference: [25] Magin, R.L.: Fractional calculus in bioengineering.CR in Biomedical Engineering 32 (1) (2004), 1–104. 10.1615/CritRevBiomedEng.v32.10
Reference: [26] Mirandette, B.: Résultats d’existence pour des systèmes d’équations différentielles du premier ordre avec tube-solution.Mémoire de matrise, Université de Montréal, 1996.
Reference: [27] Nwaeze, E.R.: A mean value theorem for the conformable fractional calculus on arbitrary time scales.Progr. Fract. Differ. Appl. 2 (4) (2016), 287–291. 10.18576/pfda/020406
Reference: [28] Ortigueira, M.D., Machado, J.A. Tenreiro: What is a fractional derivative?.J. Comput. Phys. 293 (2015), 4–13. MR 3342452, 10.1016/j.jcp.2014.07.019
Reference: [29] Pospisil, M., Skripkova, L.P.: Sturm’s theorems for conformable fractional differential equations.Math. Commun. 21 (2016), 273–281. MR 3517494
Reference: [30] Shi, A., Zhang, S.: Upper and lower solutions method and a fractional differential equation boundary value problem.Progr. Fract. Differ. Appl. 30 (2009), 13 pages. MR 2506151
Reference: [31] Shugui, K., Huiqing, C., Yaqing, Y., Ying, G.: Existence and uniqueness of the solutions for the fractional initial value problem.Electr. J. Shanghai Normal University (Natural Sciences) 45 (3) (2016), 313–319.
Reference: [32] Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev’s spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales.Adv. Math. Phys. 2016 (2016), 21 pages. MR 3579208
Reference: [33] Yang, X.J., Baleanu, D., Machado, J.A.T.: Application of the local fractional Fourier series to fractal signals.Discontinuity and complexity in nonlinear physical systems, Springer, Cham, 2014, pp. 63–89. MR 3204525
Reference: [34] Zhang, S., Su, X.: The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reverse order.Comput. Math. Appl. 62 (3) (2011), 1269–1274. MR 2824713, 10.1016/j.camwa.2011.03.008
.

Files

Files Size Format View
ArchMathRetro_055-2019-2_1.pdf 562.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo