Previous |  Up |  Next

Article

Title: Topological degree theory in fuzzy metric spaces (English)
Author: Rashid, M.H.M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 2
Year: 2019
Pages: 83-96
Summary lang: English
.
Category: math
.
Summary: The aim of this paper is to modify the theory to fuzzy metric spaces, a natural extension of probabilistic ones. More precisely, the modification concerns fuzzily normed linear spaces, and, after defining a fuzzy concept of completeness, fuzzy Banach spaces. After discussing some properties of mappings with compact images, we define the (Leray-Schauder) degree by a sort of colimit extension of (already assumed) finite dimensional ones. Then, several properties of thus defined concept are proved. As an application, a fixed point theorem in the given context is presented. (English)
Keyword: fuzzy metric space
Keyword: $t$-norm of $h$-type
Keyword: topological degree theory
MSC: 47H05
MSC: 47H09
MSC: 47H10
MSC: 54H25
idZBL: Zbl 07088760
idMR: MR3964436
DOI: 10.5817/AM2019-2-83
.
Date available: 2019-06-07T14:48:37Z
Last updated: 2020-02-27
Stable URL: http://hdl.handle.net/10338.dmlcz/147748
.
Reference: [1] Akhmerov, R.R., Kamenskii, M.I., Potapov, A.S., Rodkina, A.E., Sadovskii, B.N.: Measures of noncompactness and condensing operators.Birkhäuser-Verlag, Basel-Boston-Berlin, 1992. MR 1153247
Reference: [2] Amann, H.: A note on degree theory for gradient maps.Proc. Amer. Math. Soc. 85 (1982), 591–595. MR 0660610, 10.1090/S0002-9939-1982-0660610-2
Reference: [3] Amann, H., Weiss, S.: On the uniqueness of the topological degree.Math. Z. 130 (1973), 39–54. MR 0346601, 10.1007/BF01178975
Reference: [4] Bag, T., Samanta, S. K.: Finite dimensional fuzzy normed linear spaces.J. Fuzzy Math. 11 (3) (2003), 687–705. MR 2005663
Reference: [5] Blasi, F.S. De, Myjak, J.: A remark on the definition of topological degree for set-valued mappings.J. Math. Anal. Appl. 92 (1983), 445–451. MR 0697030, 10.1016/0022-247X(83)90261-5
Reference: [6] Browder, F.E.: Nonlinear operators and nonlinear equations of evolution in Banach spaces.Proc. Symp. Pura Math., vol. 18, Amer. Math. Soc. Providence, 1976. Zbl 0327.47022, MR 0405188
Reference: [7] Browder, F.E.: Fixed point theory and nonlinear problems.Bull. Amer. Math. Soc. 9 (1) (1983), 1–41. MR 0699315, 10.1090/S0273-0979-1983-15153-4
Reference: [8] Browder, F.E., Nussbaum, R.D.: The topological degree for noncompact nonlinear mappings in Banach spaces.Bull. Amer. Math. Soc. 74 (1968), 671–676. MR 0232257, 10.1090/S0002-9904-1968-11988-3
Reference: [9] Cellina, A., Lasota, A.: A new approach to the definition of topological degree for multi valued mappings.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 47 (1969), 434–440. MR 0276937
Reference: [10] Cho, Yeol Je, Chen, Yu-Qing: Topological Degree Theory and Applications.CRC Press, 2006. MR 2223854
Reference: [11] Cronin, J.: Fixed points and topological degree in nonlinear analysis.Mathematical Surveys, no. 11, American Mathematical Society, Providence, R.I, 1964, pp. xii+198 pp. MR 0164101
Reference: [12] Deimling, K.: Nonlinear functional analysis.Springer-Verlag, Berlin, 1985. MR 0787404
Reference: [13] Diestel, J.: Geometry of Banach spaces, Selected Topics.Lecture Notes in Math, vol. 485, Springer-Verlag, Berlin-New York, 1975, pp. xi+282 pp. MR 0461094
Reference: [14] Fitzpatrick, .M.: A generalized degree for uniform limit of A-proper mappings.J. Math. Anal. Appl. 35 (1971), 536–552. MR 0281069, 10.1016/0022-247X(71)90201-0
Reference: [15] Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 1983. Zbl 0562.35001, MR 0737190
Reference: [16] Gossez, J.-P.: On the subdifferential of saddle functions.J. Funct. Anal. 11 (1972), 220–230. MR 0350416, 10.1016/0022-1236(72)90092-4
Reference: [17] Leray, J.: Les problemes nonlineaires.Enseign. Math. 30 (1936), 141.
Reference: [18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles.Ann. Sci. Ecole. Norm. Sup. 51 (1934), 45–78. MR 1509338, 10.24033/asens.836
Reference: [19] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.Amer. Math. Soc., vol. 40, Providence, RI, 1979. Zbl 0414.34025, MR 0525202
Reference: [20] Nǎdǎban, S., Dzitac, I.: Atomic Decomposition of fuzzy normed linear spaces for wavelet applications.Informatica 25 (4) (2014), 643–662. MR 3301468, 10.15388/Informatica.2014.33
Reference: [21] Nirenberg, L.: Variational and topological methods in nonlinear problems.Bull. Amer. Math. Soc. 4 (1981), 267–302. MR 0609039, 10.1090/S0273-0979-1981-14888-6
Reference: [22] Roldán, A., Martínez-Moreno, J., Roldán, C.: On interrelationships between fuzzy metric structures.Iran. J. Fuzzy Syst. 10 (2) (2013), 133–150. MR 3098998
Reference: [23] Schweizer, B., Sklar, A.: Statistical metric spaces.Pacific J. Math. 10 (1960), 313–334. Zbl 0096.33203, MR 0115153, 10.2140/pjm.1960.10.313
Reference: [24] Schweizer, B., Sklar, A.: Probabilistical Metric Spaces.Dover Publications, New York, 2005. MR 0790314
Reference: [25] Sherwood, H.: On the completion of probabilistic metric spaces.Z. Wahrsch. Verw. Gebiete 6 (1966), 62–64. MR 0212844, 10.1007/BF00531809
Reference: [26] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces.Fuzzy Sets and Systems 222 (2013), 108–114. MR 3053895
.

Files

Files Size Format View
ArchMathRetro_055-2019-2_2.pdf 506.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo