Previous |  Up |  Next

Article

Keywords:
periodic solution; $L^{p}$-multipliers; UMD-spaces
Summary:
The aim of this work is to study the existence and uniqueness of solutions of the fractional integro-differential equations $\frac{d}{dt}[x(t) - L(x_{t})]= A[x(t)- L(x_{t})]+G(x_{t})+ \frac{1}{\Gamma (\alpha )} \int _{- \infty }^{t} (t-s)^{\alpha - 1} ( \int _{- \infty }^{s}a(s-\xi )x(\xi ) d \xi )ds+f(t)$, ($\alpha > 0$) with the periodic condition $x(0) = x(2\pi )$, where $a \in L^{1}(\mathbb{R}_{+})$ . Our approach is based on the R-boundedness of linear operators $L^{p}$-multipliers and UMD-spaces.
References:
[2] Arendt, W.: Semigroups and evolution equations: functional calculus, regularity and kernel estimates. Handb. Differ. Equ., vol. I, North-Holland, Amsterdam, 2004, pp. 1–85. MR 2103696
[3] Arendt, W., Bu, S.: The operator-valued Marcinkiewicz multiplier theorem and maximal regularity. Math. Z. 240 (2002), 311–343. DOI 10.1007/s002090100384 | MR 1900314 | Zbl 1018.47008
[4] Arendt, W., Bu, S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. (2) 47 (2004), 15–33. MR 2064734
[5] Bourgain, J.: Vector-valued Hausdorff-Young inequalities and applications. Geometric Aspects of Functional Analysis (1986/1987),, vol. 1317, Lecture Notes in Math., Springer Verlag Berlin, 1986, pp. 239–249. MR 0950985
[6] Bourgain, J.: Vector-valued singular integrals and the $H^1$-BMO duality. probability theory and harmonic analysis ed., Marcel Dekker, New York, 1986. MR 0830227
[7] Bu, S.: Maximal regularity for integral equations in Banach spaces. Taiwanese J. Math. 15 (1) (2011), 229–240. DOI 10.11650/twjm/1500406172 | MR 2780282
[8] Bu, S., Fang, F.: Periodic solutions for second order integro-differential equations with infinite delay in Banach spaces. Studia Math. 184 (2) (2008), 103–119. DOI 10.4064/sm184-2-1 | MR 2365804
[9] Cai, G., Bu, S.: Well-posedness of second order degenerate integro-differential equations with infinite delay in vector-valued function spaces. Math. Nachr. 289 (2016), 436–451. DOI 10.1002/mana.201400112 | MR 3481298
[10] Cavalcanti, M.M., Cavalcanti, V.N. Domingos, Guesmia, A.: Weak stability for coupled wave and/or Petrovsky systems with complementary frictional damping and infinite memory. J. Differential Equations 259 (2015), 7540–7577. DOI 10.1016/j.jde.2015.08.028 | MR 3401605
[11] Clément, Ph., Da Prato, G.: Existence and regularity results for an integral equation with infinite delay in a Banach space. Integral Equations Operator Theory 11 (1988), 480–500. DOI 10.1007/BF01199303 | MR 0950513
[12] Clément, Ph., de Pagter, B., Sukochev, F.A., Witvliet, M.: Schauder decomposition and multiplier theorems. Studia Math. 138 (2000), 135–163. MR 1749077
[13] Clément, Ph., Prüss, J.: An operator-valued transference principle and maximal regularity on vector-valued $Lp$-spaces. Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998), Lecture Notes in Pure and Appl. Math., vol. 215, Dekker, New York, 2001, pp. 67–87. MR 1816437
[14] Da Prato, G., Lunardi, A.: Periodic solutions for linear integrodifferential equations with infinite delay in Banach spaces. Differential Equations in Banach spaces, Lecture Notes in Math., vol. 1223, Springer, Berlin, 1986, pp. 49–60. MR 0872516
[15] de Pagter, B., Witvliet, H.: Unconditional decompositions and $UMD$ spaces. Publ. Math. Besançon, Fasc. 16 (1998), 79–111. MR 1768325
[16] Denk, R., Hieber, M., Prüss, Jan: R-boundedness, Fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. 788 (2003). MR 2006641
[17] Girardi, M., Weis, L.: Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr. 251 (2003), 34–51. DOI 10.1002/mana.200310029 | MR 1960803
[18] Girardi, M., Weis, L.: Operator-valued Fourier multipliers and the geometry of Banach spaces. J. Funct. Anal. 204 (2) (2003), 320–354. DOI 10.1016/S0022-1236(03)00185-X | MR 2017318
[19] Keyantuo, V., Lizama, C.: Fourier multipliers and integro-differential equations in Banach spaces. J. London Math. Soc. 69 (3) (2004), 737–750. DOI 10.1112/S0024610704005198 | MR 2050043
[20] Keyantuo, V., Lizama, C.: Periodic solutions of second order differential equations in Banach spaces. Math. Z. 253 (2006), 489–514. DOI 10.1007/s00209-005-0919-1 | MR 2221083
[21] Keyantuo, V., Lizama, C., Poblete, V.: Periodic solutions of integro-differential equations in vector-valued function spaces. J. Differential Equations 246 (2009), 1007–1037. DOI 10.1016/j.jde.2008.09.007 | MR 2474584
[22] Koumla, S., Ezzinbi, Kh., Bahloul, R.: Mild solutions for some partial functional integrodifferential equations with finite delay in Fréchet spaces. SeMA J. 74 (4) (2017), 489–501. DOI 10.1007/s40324-016-0096-7 | MR 3736690
[23] Kunstmann, P.C., Weis, L.: Maximal $L_p$-regularity for parabolic equations, Fourier multiplier theorems and $H^\infty $-functional calculus. Functional analytic methods for evolution equations, Lecture Notes in Math., vol. 1855, Springer, Berlin, 2004, pp. 65–311. MR 2108959
[24] Lizama, C.: Fourier multipliers and periodic solutions of delay equations in Banach spaces. J. Math. Anal. Appl. 324 (1) (2006), 921–933. DOI 10.1016/j.jmaa.2005.12.043 | MR 2265090
[25] Lizama, C., Poblete, V.: Periodic solutions of fractional differential equations with delay. Journal of Evolution Equations 11 (2011), 57–70. DOI 10.1007/s00028-010-0081-z | MR 2780573
[26] Poblete, V.: Solutions of second-order integro-differental equations on periodic Besov space. Proc. Edinburgh Math. Soc. (2) 50 (20) (2007), 477–492. MR 2334958
[27] Suresh Kumar, P., Balachandran, K., Annapoorani, N.: Controllability of nonlinear fractional Langevin delay systems. Nonlinear Analysis: Modelling and Control 23 (3) (2017), 321–340, https://doi.org/10.15388/NA.2018.3.3 DOI 10.15388/NA.2018.3.3 | MR 3798269
[28] Weis, L.: A new approach to maximal $L_p$-regularity. Lect. Notes Pure Appl. Math. 2115 (2001), 195–214. MR 1818002
[29] Weis, L.: Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity. Math. Ann. 319 (2001), 735–758. DOI 10.1007/PL00004457 | MR 1825406
Partner of
EuDML logo