Previous |  Up |  Next


Totally umbilical; Screen conformal; quasi-constant curvature
We study lightlike hypersurfaces $M$ of an indefinite Kaehler manifold $\bar {M}$ of quasi-constant curvature subject to the condition that the characteristic vector field $\zeta $ of $\bar {M}$ is tangent to $M$. First, we provide a new result for such a lightlike hypersurface. Next, we investigate such a lightlike hypersurface $M$ of $\bar {M}$ such that (1) the screen distribution $S(TM)$ is totally umbilical or (2) $M$ is screen conformal.
[1] Atindogbe, C., Duggal, K.L.: Conformal screen on lightlike hypersurfaces. International J. of Pure and Applied Math., 11, 4, 2004, 421-442, MR 2039644
[2] Chen, B.Y., Yano, K.: Hypersurfaces of a conformally flat space. Tensor (NS), 26, 1972, 318-322, MR 0331283 | Zbl 0257.53027
[3] Duggal, K.L., Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications. 1996, Kluwer Acad. Publishers, Dordrecht, MR 1383318
[4] Duggal, K.L., Jin, D.H.: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys., 60, 2010, 1881-1889, DOI 10.1016/j.geomphys.2010.07.005 | MR 2735275
[5] Jin, D.H.: Geometry of lightlike hypersurfaces of an indefinite Sasakian manifold. Indian J. of Pure and Applied Math., 41, 4, 2010, 569-581, DOI 10.1007/s13226-010-0032-y | MR 2672691
[6] Jin, D.H.: Lightlike real hypersurfaces with totally umbilical screen distributions. Commun. Korean Math. Soc., 25, 3, 2010, 443-450, DOI 10.4134/CKMS.2010.25.3.443 | MR 2675996
[7] Rham, G. de: Sur la réductibilité d'un espace de Riemannian. Comm. Math. Helv., 26, 1952, 328-344, DOI 10.1007/BF02564308 | MR 0052177
Partner of
EuDML logo