Previous |  Up |  Next

Article

Title: Relative tilting modules with respect to a semidualizing module (English)
Author: Salimi, Maryam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 781-800
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative Noetherian ring, and let $C$ be a semidualizing \hbox {$R$-module}. The notion of $C$-tilting $R$-modules is introduced as the relative setting of the notion of tilting $R$-modules with respect to $C$. Some properties of tilting and $C$-tilting modules and the relations between them are mentioned. It is shown that every finitely generated $C$-tilting $R$-module is $C$-projective. Finally, we investigate some kernel subcategories related to $C$-tilting modules. (English)
Keyword: tilting module
Keyword: semidualizing module
Keyword: $C$-projective
MSC: 13D05
MSC: 13D45
idZBL: Zbl 07088816
idMR: MR3989278
DOI: 10.21136/CMJ.2019.0510-17
.
Date available: 2019-07-24T11:19:03Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147789
.
Reference: [1] Avramov, L. L., Foxby, H.-B.: Ring homomorphisms and finite Gorenstein dimension.Proc. Lond. Math. Soc. III. 75 (1997), 241-270. Zbl 0901.13011, MR 1455856, 10.1112/S0024611597000348
Reference: [2] Bazzoni, S., Mantese, F., Tonolo, A.: Derived equivalence induced by infinitely generated {$n$}-tilting modules.Proc. Am. Math. Soc. 139 (2011), 4225-4234. Zbl 1232.16004, MR 2823068, 10.1090/S0002-9939-2011-10900-6
Reference: [3] Bongratz, K.: Tilted algebras.Representations of Algebras. Proc. 3rd Int. Conf., Puebla, 1980 Lect. Notes Math. 903, Springer, Berlin (1981), 26-38. Zbl 0478.16025, MR 0654701, 10.1007/bfb0092982
Reference: [4] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories.Trans. Am. Math. Soc. 353 (2001), 1839-1883. Zbl 0969.13006, MR 1813596, 10.1090/S0002-9947-01-02627-7
Reference: [5] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra.Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2011). Zbl 1238.13001, MR 2857612, 10.1515/9783110215212
Reference: [6] Foxby, H.-B.: Gorenstein modules and related modules.Math. Scand. 31 (1973), 267-284. Zbl 0272.13009, MR 0327752, 10.7146/math.scand.a-11434
Reference: [7] Golod, E. S.: $G$-dimension and generalized perfect ideals.Tr. Mat. Inst. Steklova 165 Russian (1984), 62-66. Zbl 0577.13008, MR 0752933
Reference: [8] Happel, D., Ringel, C. M.: Tilted algebras.Trans. Am. Math. Soc. 274 (1982), 399-443. Zbl 0503.16024, MR 0675063, 10.2307/1999116
Reference: [9] Holm, H., Jø{r}gensen, P.: Semi-dualizing modules and related Gorenstein homological dimensions.J. Pure Appl. Algebra 205 (2006), 423-445. Zbl 1094.13021, MR 2203625, 10.1016/j.jpaa.2005.07.010
Reference: [10] Holm, H., White, D.: Foxby equivalence over associative rings.J. Math. Kyoto Univ. 47 (2007), 781-808. Zbl 1154.16007, MR 2413065, 10.1215/kjm/1250692289
Reference: [11] Miyashita, Y.: Tilting modules of finite projective dimension.Math. Z. 193 (1986), 113-146. Zbl 0578.16015, MR 0852914, 10.1007/BF01163359
Reference: [12] Salimi, M.: On relative Gorenstein homological dimensions with respect to a dualizing module.Mat. Vesnik 69 (2017), 118-125. MR 3621408
Reference: [13] Salimi, M., Sather-Wagstaff, S., Tavasoli, E., Yassemi, S.: Relative Tor functors with respect to a semidualizing module.Algebr. Represent. Theory 17 (2014), 103-120. Zbl 1295.13023, MR 3160715, 10.1007/s10468-012-9389-4
Reference: [14] Salimi, M., Tavasoli, E., Yassemi, S.: Top local cohomology modules and Gorenstein injectivity with respect to a semidualizing module.Arch. Math. 98 (2012), 299-305. Zbl 1246.13021, MR 2914346, 10.1007/s00013-012-0371-5
Reference: [15] Sather-Wagstaff, S.: Semidualizing Modules.Available at https://ssather.people.clemson.edu/DOCS/sdm.pdf. Zbl 1282.13021
Reference: [16] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules.Math. Z. 264 (2010), 571-600. Zbl 1190.13007, MR 2591820, 10.1007/s00209-009-0480-4
Reference: [17] Takahashi, R., White, D.: Homological aspects of semidualizing modules.Math. Scand. 106 (2010), 5-22. Zbl 1193.13012, MR 2603458, 10.7146/math.scand.a-15121
Reference: [18] Tang, X.: New characterizations of dualizing modules.Commun. Algebra 40 (2012), 845-861. Zbl 1246.13022, MR 2899912, 10.1080/00927872.2010.540285
Reference: [19] Vasconcelos, W. V.: Divisor Theory in Module Categories.North-Holland Mathematics Studies 14, Elsevier, Amsterdam (1974). Zbl 0296.13005, MR 0498530, 10.1016/s0304-0208(08)x7021-5
Reference: [20] White, D.: Gorenstein projective dimension with respect to a semidualizing module.J. Commut. Algebra 2 (2010), 111-137. Zbl 1237.13029, MR 2607104, 10.1216/JCA-2010-2-1-111
.

Files

Files Size Format View
CzechMathJ_69-2019-3_11.pdf 366.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo