Previous |  Up |  Next

Article

Keywords:
ring extension; generalized tilting module; faithfully balanced bimodule
Summary:
Let $ \Gamma $ be a ring extension of $R$. We show the left $\Gamma $-module $U=\Gamma \otimes _{R}C$ with the endmorphism ring End$_{\Gamma }U=\Delta $ is a generalized tilting module when $_{R}C$ is a generalized tilting module under some conditions.
References:
[1] Assem, I., Marmaridis, N.: Tilting modules over split-by-nilpotent extensions. Commun. Algebra 26 (1998), 1547-1555. DOI 10.1080/00927879808826219 | MR 1622428 | Zbl 0915.16007
[2] Christensen, L. W.: Semi-dualizing complexes and their Auslander categories. Trans. Am. Math. Soc. 353 (2001), 1839-1883. DOI 10.1090/S0002-9947-01-02627-7 | MR 1813596 | Zbl 0969.13006
[3] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. De Gruyter Expositions in Mathematics 30, Walter de Gruyter, Berlin (2000). DOI 10.1515/9783110803662 | MR 1753146 | Zbl 0952.13001
[4] Foxby, H.-B.: Gorenstein modules and related modules. Math. Scand. 31 (1972), 267-284. DOI 10.7146/math.scand.a-11434 | MR 0327752 | Zbl 0272.13009
[5] Fuller, K. R.: *-modules over ring extensions. Commun. Algebra 25 (1997), 2839-2860. DOI 10.1080/00927879708826026 | MR 1458733 | Zbl 0885.16019
[6] Fuller, K. R.: Ring extensions and duality. Algebra and Its Applications Contemp. Math. 259, American Mathematical Society, Providence D. V. Huynh et al. (2000), 213-222. DOI 10.1090/conm/259 | MR 1778503 | Zbl 0965.16004
[7] Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules. De Gruyter Expositions in Mathematics 41, Walter De Gruyter, Berlin (2006). DOI 10.1090/conm/259 | MR 2251271 | Zbl 1121.16002
[8] Golod, E. S.: $G$-dimension and generalized perfect ideals. Tr. Mat. Inst. Steklova Russian 165 (1984), 62-66. MR 0752933 | Zbl 0577.13008
[9] Holm, H., White, D.: Foxby equivalence over associative rings. J. Math. Kyoto Univ. 47 (2007), 781-808. DOI 10.1215/kjm/1250692289 | MR 2413065 | Zbl 1154.16007
[10] Miyashita, Y.: Tilting modules of finite projective dimension. Math. Z. 193 (1986), 113-146. DOI 10.1007/BF01163359 | MR 0852914 | Zbl 0578.16015
[11] Sather-Wagstaff, S., Sharif, T., White, D.: Comparison of relative cohomology theories with respect to semidualizing modules. Math. Z. 264 (2010), 571-600. DOI 10.1007/s00209-009-0480-4 | MR 2591820 | Zbl 1190.13007
[12] Sather-Wagstaff, S., Sharif, T., White, D.: Tate cohomology with respect to semidualizing modules. J. Algebra 324 (2010), 2336-2368. DOI 10.1016/j.jalgebra.2010.07.007 | MR 2684143 | Zbl 1207.13009
[13] Sather-Wagstaff, S., Sharif, T., White, D.: AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr. Represent. Theory 14 (2011), 403-428. DOI 10.1007/s10468-009-9195-9 | MR 2785915 | Zbl 1317.13029
[14] Tonolo, A.: $n$-cotilting and $n$-tilting modules over ring extensions. Forum Math. 17 (2005), 555-567. DOI 10.1515/form.2005.17.4.555 | MR 2154419 | Zbl 1088.16011
[15] Vasconcelos, W. V.: Divisor Theory in Module Categories. North-Holland Mathematics Studies 14. Notas de Matematica 53, North-Holland Publishing, Amsterdam; American Elsevier Publishing Company, New York (1974). DOI 10.1016/s0304-0208(08)x7021-5 | MR 0498530 | Zbl 0296.13005
[16] Wakamatsu, T.: On modules with trivial self-extensions. J. Algebra 114 (1988), 106-114. DOI 10.1016/0021-8693(88)90215-3 | MR 0931903 | Zbl 0646.16025
[17] Wakamatsu, T.: Stable equivalence for self-injective algebras and a generalization of tilting modules. J. Algebra 134 (1990), 298-325. DOI 10.1016/0021-8693(90)90055-S | MR 1074331 | Zbl 0726.16009
[18] Wakamatsu, T.: Tilting modules and Auslander's Gorenstein property. J. Algebra 275 (2004), 3-39. DOI 10.1016/j.jalgebra.2003.12.008 | MR 2047438 | Zbl 1076.16006
[19] Wei, J.: $n$-star modules over ring extensions. J. Algebra 310 (2007), 903-916. DOI 10.1016/j.jalgebra.2006.10.026 | MR 2308185 | Zbl 1118.16011
Partner of
EuDML logo