Previous |  Up |  Next

Article

Title: Pseudo-Riemannian weakly symmetric manifolds of low dimension (English)
Author: Zhang, Bo
Author: Chen, Zhiqi
Author: Deng, Shaoqiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 3
Year: 2019
Pages: 811-835
Summary lang: English
.
Category: math
.
Summary: We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions $2$ and $3$, based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive $3$-dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a $3$-dimensional reductive $2$-fold symmetric pseudo-Riemannian manifold must be globally symmetric. (English)
Keyword: pseudo-Riemannian manifold
Keyword: pseudo-Riemannian weakly symmetric manifold
Keyword: pseudo-Riemannian weakly symmetric Lie algebra
Keyword: Lorentzian weakly symmetric manifold
MSC: 22E46
MSC: 53C30
idZBL: Zbl 07088818
idMR: MR3989280
DOI: 10.21136/CMJ.2019.0515-17
.
Date available: 2019-07-24T11:19:52Z
Last updated: 2021-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/147791
.
Reference: [1] Berndt, J., Vanhecke, L.: Geometry of weakly symmetric spaces.J. Math. Soc. Japan 48 (1996), 745-760. Zbl 0877.53027, MR 1404821, 10.2969/jmsj/04840745
Reference: [2] Chen, Z., Wolf, J. A.: Pseudo-Riemannian weakly symmetric manifolds.Ann. Global Anal. Geom. 41 (2012), 381-390. Zbl 1237.53071, MR 2886205, 10.1007/s10455-011-9291-z
Reference: [3] Barco, V. del, Ovando, G. P.: Isometric actions on pseudo-Riemannian nilmanifolds.Ann. Global Anal. Geom. 45 (2014), 95-110. Zbl 1295.53081, MR 3165476, 10.1007/s10455-013-9389-6
Reference: [4] Deng, S.: An algebraic approach to weakly symmetric Finsler spaces.Can. J. Math. 62 (2010), 52-73. Zbl 1205.53078, MR 2597023, 10.4153/CJM-2010-004-x
Reference: [5] Deng, S.: On the symmetry of Riemannian manifolds.J. Reine Angew. Math. 680 (2013), 235-256. Zbl 1273.53047, MR 3100956, 10.1515/crelle.2012.040
Reference: [6] Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces.Pure and Applied Mathematics 80, Academic Press, New York (1978). Zbl 0451.53038, MR 0514561
Reference: [7] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Vol. I.Interscience Publishers, John Wiley & Sons, New York (1963). Zbl 0119.37502, MR 0152974
Reference: [8] Selberg, A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series.J. Indian Math. Soc., New Ser. 20 (1956), 47-87. Zbl 0072.08201, MR 0088511
Reference: [9] Wang, H.-C.: Two-point homogeneous spaces.Ann. Math. 55 (1952), 177-191. Zbl 0048.40503, MR 0047345, 10.2307/1969427
Reference: [10] Wolf, J. A.: Harmonic Analysis on Commutative Spaces.Mathematical Surveys and Monographs 142, American Mathematical Society, Providence (2007). Zbl 1156.22010, MR 2328043, 10.1090/surv/142
Reference: [11] Yakimova, O. S.: Weakly symmetric Riemannian manifolds with a reductive isometry group.Sb. Math. 195 (2004), 599-614 English. Russian original translation from Mat. Sb. 195 2004 143-160. Zbl 1078.53043, MR 2086668, 10.1070/SM2004v195n04ABEH000817
Reference: [12] Ziller, W.: Weakly symmetric spaces.Topics in Geometry. In Memory of Joseph D'Atri Progr. Nonlinear Differ. Equ. Appl. 20, Birkhäuser, Boston Gindikin, S. et al. (1996), 355-368. Zbl 0860.53030, MR 1390324, 10.1007/978-1-4612-2432-7
.

Files

Files Size Format View
CzechMathJ_69-2019-3_13.pdf 352.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo