Previous |  Up |  Next

Article

Title: Locally pointwise superconvergence of the tensor-product finite element in three dimensions (English)
Author: Liu, Jinghong
Author: Liu, Wen
Author: Zhu, Qiding
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 4
Year: 2019
Pages: 383-396
Summary lang: English
.
Category: math
.
Summary: Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green's function and discrete derivative Green's function, and the relationship of norms in the finite element space such as $L^2$-norms, $W^{1,\infty }$-norms, and negative-norms in locally smooth subsets of the domain $\Omega $, locally pointwise superconvergence occurs in function values and derivatives. (English)
Keyword: tensor-product finite element
Keyword: local superconvergence
Keyword: discrete Green's function
MSC: 65N30
idZBL: Zbl 07088747
idMR: MR3987224
DOI: 10.21136/AM.2019.0219-18
.
Date available: 2019-07-24T11:22:31Z
Last updated: 2021-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147795
.
Reference: [1] Brandts, J., Křížek, M.: History and future of superconvergence in three-dimensional finite element methods.Finite Element Methods. Three-Dimensional Problems P. Neittaanmäki, M. Křížek GAKUTO International Series. Mathematical Science Applications 15, Gakkotosho, Tokyo (2001), 22-33. Zbl 0994.65114, MR 1896264
Reference: [2] Brandts, J., Křížek, M.: Gradient superconvergence on uniform simplicial partitions of polytopes.IMA J. Numer. Anal. 23 (2003), 489-505. Zbl 1042.65081, MR 1987941, 10.1093/imanum/23.3.489
Reference: [3] Brandts, J., Křížek, M.: Superconvergence of tetrahedral quadratic finite elements.J. Comput. Math. 23 (2005), 27-36. Zbl 1072.65137, MR 2124141
Reference: [4] Chen, C. M.: Optimal points of stresses for the linear tetrahedral element.Nat. Sci. J. Xiangtan Univ. 3 (1980), 16-24 Chinese.
Reference: [5] Chen, C. M.: Construction Theory of Superconvergence of Finite Elements.Hunan Science and Technology Press, Changsha (2001), Chinese.
Reference: [6] Chen, L.: Superconvergence of tetrahedral linear finite elements.Int. J. Numer. Anal. Model. 3 (2006), 273-282. Zbl 1100.65084, MR 2237882
Reference: [7] J. Douglas, Jr., T. Dupont, M. F. Wheeler: An $L^{\infty }$ estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials.Rev. Franc. Automat. Inform. Rech. Operat., Analyse Numer. 8 (1974), 61-66. Zbl 0315.65062, MR 0359358, 10.1051/m2an/197408r200611
Reference: [8] Goodsell, G.: Gradient Superconvergence for Piecewise Linear Tetrahedral Finite Elements.Technical Report RAL-90-031, Science and Engineering Research Council, Rutherford Appleton Laboratory (1990).
Reference: [9] Goodsell, G.: Pointwise superconvergence of the gradient for the linear tetrahedral element.Numer. Methods Partial Differ. Equations 10 (1994), 651-666. Zbl 0807.65112, MR 1290950, 10.1002/num.1690100511
Reference: [10] Hannukainen, A., Korotov, S., Křížek, M.: Nodal ${\mathcal O}(h^4)$-superconvergence in 3D by averaging piecewise linear, bilinear, and trilinear FE approximations.J. Comput. Math. 28 (2010), 1-10. Zbl 1224.65247, MR 2603577, 10.4208/jcm.2009.09-m1004
Reference: [11] He, W. M., Guan, X. F., Cui, J. Z.: The local superconvergence of the trilinear element for the three-dimensional Poisson problem.J. Math. Anal. Appl. 388 (2012), 863-872. Zbl 1237.65115, MR 2869793, 10.1016/j.jmaa.2011.10.031
Reference: [12] Kantchev, V., Lazarov, R.: Superconvergence of the gradient of linear finite elements for 3D Poisson equation.Proc. Int. Symp. Optimal Algorithms B. Sendov Bulgarian Academy of Sciences, Sofia (1986), 172-182. Zbl 0672.65088, MR 1171706
Reference: [13] Lin, Q., Yan, N. N.: Construction and Analysis of High Efficient Finite Elements.Hebei University Press, Baoding (1996), Chinese.
Reference: [14] Lin, R., Zhang, Z.: Natural superconvergence points in three-dimensional finite elements.SIAM J. Numer. Anal. 46 (2008), 1281-1297. Zbl 1168.65059, MR 2390994, 10.1137/070681168
Reference: [15] Liu, J., Jia, B., Zhu, Q.: An estimate for the three-dimensional discrete Green's function and applications.J. Math. Anal. Appl. 370 (2010), 350-363. Zbl 1194.35013, MR 2651658, 10.1016/j.jmaa.2010.05.002
Reference: [16] Liu, J., Sun, H., Zhu, Q.: Superconvergence of tricubic block finite elements.Sci. China, Ser. A 52 (2009), 959-972. Zbl 1183.65145, MR 2505002, 10.1007/s11425-009-0039-1
Reference: [17] Liu, J., Zhu, Q.: Estimate for the $W^{1,1}$-seminorm of discrete derivative Green's function in three dimensions.J. Hunan Univ. Arts Sci., Nat. Sci. 16 (2004), 1-3 Chinese. Zbl 1134.35344, MR 2139634
Reference: [18] Liu, J., Zhu, Q.: Maximum-norm superapproximation of the gradient for quadratic finite elements in three dimensions.Acta Math. Sci., Ser. A, Chin. Ed. 26 (2006), 458-466 Chinese. Zbl 1154.65371, MR 2243664
Reference: [19] Liu, J., Zhu, Q.: Pointwise supercloseness of tensor-product block finite elements.Numer. Methods Partial Differ. Equations 25 (2009), 990-1008. Zbl 1178.65137, MR 2526993, 10.1002/num.20384
Reference: [20] Liu, J., Zhu, Q.: Pointwise supercloseness of pentahedral finite elements.Numer. Methods Partial Differ. Equations 26 (2010), 1572-1580. Zbl 1204.65135, MR 2732397, 10.1002/num.20510
Reference: [21] Pehlivanov, A.: Superconvergence of the gradient for quadratic 3D simplex finite elements.Proceedings of the Conference on Numerical Methods and Application Bulgarian Academy of Sciences, Sofia (1989), 362-366. MR 1027639
Reference: [22] Schatz, A. H., Sloan, I. H., Wahlbin, L. B.: Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point.SIAM J. Numer. Anal. 33 (1996), 505-521. Zbl 0855.65115, MR 1388486, 10.1137/0733027
Reference: [23] Zhang, Z., Lin, R.: Locating natural superconvergent points of finite element methods in 3D.Int. J. Numer. Anal. Model. 2 (2005), 19-30. Zbl 1071.65140, MR 2112655
Reference: [24] Zhu, Q., Lin, Q.: Superconvergence Theory of the Finite Element Methods.Hunan Science and Technology Press, Changsha (1989), Chinese. MR 1200243
Reference: [25] Zlámal, M.: Superconvergence and reduced integration in the finite element method.Math. Comput. 32 (1978), 663-685. Zbl 0448.65068, MR 0495027, 10.2307/2006479
.

Files

Files Size Format View
AplMat_64-2019-4_1.pdf 307.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo