Previous |  Up |  Next

Article

Title: A logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain (English)
Author: Fan, Jishan
Author: Jia, Xuanji
Author: Zhou, Yong
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 4
Year: 2019
Pages: 397-407
Summary lang: English
.
Category: math
.
Summary: This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition. (English)
Keyword: regularity criterion
Keyword: Navier-Stokes system
Keyword: bounded domain
MSC: 35Q30
MSC: 35Q35
MSC: 76D05
idZBL: Zbl 07088748
idMR: MR3987225
DOI: 10.21136/AM.2019.0246-18
.
Date available: 2019-07-24T11:22:58Z
Last updated: 2021-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147797
.
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic Press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(13)62896-2
Reference: [2] Azzam, J., Bedrossian, J.: Bounded mean oscillation and the uniqueness of active scalar equations.Trans. Am. Math. Soc. 367 (2015), 3095-3118. Zbl 1315.35009, MR 3314802, 10.1090/s0002-9947-2014-06040-6
Reference: [3] Veiga, H. Beirão da, Berselli, L. C.: Navier-Stokes equations: Green's matrices, vorticity direction, and regularity up to the boundary.J. Differ. Equations 246 (2009), 597-628. Zbl 1155.35067, MR 2468730, 10.1016/j.jde.2008.02.043
Reference: [4] Veiga, H. Beirão da, Crispo, F.: Sharp inviscid limit results under Navier type boundary conditions. An $L^p$ theory.J. Math. Fluid Mech. 12 (2010), 397-411. Zbl 1261.35099, MR 2674070, 10.1007/s00021-009-0295-4
Reference: [5] Bendali, A., Dominguez, J. M., Gallic, S.: A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three-dimensional domains.J. Math. Anal. Appl. 107 (1985), 537-560. Zbl 0591.35053, MR 0787732, 10.1016/0022-247x(85)90330-0
Reference: [6] Berselli, L. C.: On a regularity criterion for the solutions to the 3D Navier-Stokes equations.Differ. Integral Equ. 15 (2002), 1129-1137. Zbl 1034.35087, MR 1919765
Reference: [7] Georgescu, V.: Some boundary value problems for differential forms on compact Riemannian manifolds.Ann. Mat. Pura Appl. (4) 122 (1979), 159-198. Zbl 0432.58026, MR 0565068, 10.1007/bf02411693
Reference: [8] Giga, Y.: Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system.J. Differ. Equations 61 (1986), 186-212. Zbl 0577.35058, MR 0833416, 10.1016/0022-0396(86)90096-3
Reference: [9] He, F., Ma, C., Wang, Y.: On regularity for the Boussinesq system in a bounded domain.Appl. Math. Comput. 281 (2016), 148-151. Zbl 07039666, MR 3466091, 10.1016/j.amc.2016.01.054
Reference: [10] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen.Math. Nachr. 4 (1951), 213-231 German. Zbl 0042.10604, MR 0050423, 10.1002/mana.3210040121
Reference: [11] Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow.J. Differ. Equations 252 (2012), 2222-2265. Zbl 1233.35168, MR 2860617, 10.1016/j.jde.2011.07.036
Reference: [12] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/s0036141004442197
Reference: [13] Leray, J.: Sur le mouvement d'un liquide visqueux emplissant l'espace.Acta Math. 63 (1934), 193-248 French \99999JFM99999 60.0726.05. MR 1555394, 10.1007/BF02547354
Reference: [14] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 2: Compressible Models.Oxford Lecture Series in Mathematics and Its Applications 10, Clarendon Press, Oxford (1998). Zbl 0908.76004, MR 1637634
Reference: [15] Lunardi, A.: Interpolation Theory.Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) 9, Edizioni della Normale, Pisa (2009). Zbl 1171.41001, MR 2523200, 10.1007/978-88-7642-638-4
Reference: [16] Nakao, K., Taniuchi, Y.: An alternative proof of logarithmically improved Beale-Kato-Majda type extension criteria for smooth solutions to the Navier-Stokes equations.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 176 (2018), 48-55. Zbl 1403.35207, MR 3856717, 10.1016/j.na.2018.05.018
Reference: [17] Nakao, K., Taniuchi, Y.: Brezis-Gallouet-Wainger type inequalities and blow-up criteria for Navier-Stokes equations in unbounded domains.Commun. Math. Phys. 359 (2018), 951-973. Zbl 1397.35176, MR 3784537, 10.1007/s00220-017-3061-0
Reference: [18] Nirenberg, L.: On elliptic partial differential equations.Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. Zbl 0088.07601, MR 0109940
Reference: [19] Wahl, W. von: Estimating $\nabla u$ by div $u$ and curl $u$.Math. Methods Appl. Sci. 15 (1992), 123-143 \99999DOI99999 10.1002/mma.1670150206 \filbreak. Zbl 0747.31006, MR 1149300, 10.1002/mma.1670150206
.

Files

Files Size Format View
AplMat_64-2019-4_2.pdf 264.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo