Previous |  Up |  Next

Article

Title: Inertial forward-backward splitting method in Banach spaces with application to compressed sensing (English)
Author: Cholamjiak, Prasit
Author: Shehu, Yekini
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 4
Year: 2019
Pages: 409-435
Summary lang: English
.
Category: math
.
Summary: We propose a Halpern-type forward-backward splitting with inertial extrapolation step for finding a zero of the sum of accretive operators in Banach spaces. Strong convergence of the sequence of iterates generated by the method proposed is obtained under mild assumptions. We give some numerical results in compressed sensing to validate the theoretical analysis results. Our result is one of the few available inertial-type methods for zeros of the sum of accretive operators in Banach spaces. (English)
Keyword: inertial term
Keyword: forward-backward splitting
Keyword: inclusion problem
Keyword: strong convergence
Keyword: Banach space
MSC: 47H05
MSC: 47J20
MSC: 47J25
idZBL: Zbl 07088749
idMR: MR3987226
DOI: 10.21136/AM.2019.0323-18
.
Date available: 2019-07-24T11:23:34Z
Last updated: 2021-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147798
.
Reference: [1] Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3-11. Zbl 0991.65056, MR 1845931, 10.1023/A:1011253113155
Reference: [2] Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured monotone inclusions.Available at https://hal.archives-ouvertes.fr/hal-01782016 (2018), Hal ID: 01782016, 35 pages. MR 4026592
Reference: [3] Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et $n$-cycliquement monotones.Isr. J. Math. 26 French (1977), 137-150. Zbl 0352.47023, MR 0500279, 10.1007/BF03007664
Reference: [4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.SIAM J. Imaging Sci. 2 (2009), 183-202. Zbl 1175.94009, MR 2486527, 10.1137/080716542
Reference: [5] Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods.Athena Scientific, Belmont (2014). Zbl 1325.65001, MR 3587745
Reference: [6] Boţ, R. I., Csetnek, E. R.: An inertial alternating direction method of multipliers.Minimax Theory Appl. 1 (2016), 29-49. Zbl 1337.90082, MR 3477895
Reference: [7] Boţ, R. I., Csetnek, E. R., Hendrich, C.: Inertial Douglas-Rachford splitting for monotone inclusion problems.Appl. Math. Comput. 256 (2015), 472-487. Zbl 1338.65145, MR 3316085, 10.1016/j.amc.2015.01.017
Reference: [8] Brézis, H., Lions, P.-L.: Produits infinis de résolvantes.Isr. J. Math. 29 (1978), 329-345 French. Zbl 0387.47038, MR 0491922, 10.1007/BF02761171
Reference: [9] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Probl. 20 (2004), 103-120. Zbl 1051.65067, MR 2044608, 10.1088/0266-5611/20/1/006
Reference: [10] Chen, C., Chan, R. H., Ma, S., Yang, J.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (2015), 2239-2267. Zbl 1328.65134, MR 3404682, 10.1137/15100463X
Reference: [11] Chen, G. H.-G., Rockafellar, R. T.: Convergence rates in forward-backward splitting.SIAM J. Optim. 7 (1997), 421-444. Zbl 0876.49009, MR 1443627, 10.1137/S1052623495290179
Reference: [12] Chidume, C.: Geometric Properties of Banach Spaces and Nonlinear Iterations.Lecture Notes in Mathematics 1965, Springer, Berlin (2009). Zbl 1167.47002, MR 2504478, 10.1007/978-1-84882-190-3
Reference: [13] Cholamjiak, P.: A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces.Numer. Algorithms 71 (2016), 915-932. Zbl 1342.47079, MR 3479747, 10.1007/s11075-015-0030-6
Reference: [14] Cholamjiak, P., Cholamjiak, W., Suantai, S.: A modified regularization method for finding zeros of monotone operators in Hilbert spaces.J. Inequal. Appl. 2015 (2015), Article ID 220, 10 pages. Zbl 1338.47077, MR 3367213, 10.1186/s13660-015-0739-8
Reference: [15] Cholamjiak, W., Cholamjiak, P., Suantai, S.: An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces.J. Fixed Point Theory Appl. 20 (2018), Article ID 42, 17 pages. Zbl 06858734, MR 3764675, 10.1007/s11784-018-0526-5
Reference: [16] Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems.Mathematics and Its Applications 62, Kluwer Academic Publishers, Dordrecht (1990). Zbl 0712.47043, MR 1079061, 10.1007/978-94-009-2121-4
Reference: [17] Combettes, P. L.: Iterative construction of the resolvent of a sum of maximal monotone operators.J. Convex Anal. 16 (2009), 727-748. Zbl 1193.47067, MR 2583892
Reference: [18] Combettes, P. L., Wajs, V. R.: Signal recovery by proximal forward-backward splitting.Multiscale Model. Simul. 4 (2005), 1168-1200. Zbl 1179.94031, MR 2203849, 10.1137/050626090
Reference: [19] Dong, Q., Jiang, D., Cholamjiak, P., Shehu, Y.: A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions.J. Fixed Point Theory Appl. 19 (2017), 3097-3118. Zbl 06817792, MR 3720497, 10.1007/s11784-017-0472-7
Reference: [20] Dunn, J. C.: Convexity, monotonicity, and gradient processes in Hilbert space.J. Math. Anal. Appl. 53 (1976), 145-158. Zbl 0321.49025, MR 0388176, 10.1016/0022-247X(76)90152-9
Reference: [21] Güler, O.: On the convergence of the proximal point algorithm for convex minimization.SIAM J. Control Optim. 29 (1991), 403-419. Zbl 0737.90047, MR 1092735, 10.1137/0329022
Reference: [22] Halpern, B.: Fixed points of nonexpanding maps.Bull. Am. Math. Soc. 73 (1967), 957-961. Zbl 0177.19101, MR 0218938, 10.1090/S0002-9904-1967-11864-0
Reference: [23] Haugazeau, Y.: Sur la minimisation des formes quadratiques avec contraintes.C. R. Acad. Sci., Paris, Sér. A 264 (1967), 322-324 French. Zbl 0149.36201, MR 0215113
Reference: [24] Kazarinoff, N. D.: Analytic Inequalities.Holt, Rinehart and Winston, New York (1961). Zbl 0097.03801, MR 0260957
Reference: [25] Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators.SIAM J. Numer. Anal. 16 (1979), 964-979. Zbl 0426.65050, MR 0551319, 10.1137/0716071
Reference: [26] López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces.Abstr. Appl. Anal. 2012 (2012), Article ID 109236, 25 pages. Zbl 1252.47043, MR 2955015, 10.1155/2012/109236
Reference: [27] Lorenz, D. A., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vis. 51 (2015), 311-325. Zbl 1327.47063, MR 3314536, 10.1007/s10851-014-0523-2
Reference: [28] Maingé, P.-E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469-479. Zbl 1111.47058, MR 2273538, 10.1016/j.jmaa.2005.12.066
Reference: [29] Martinet, B.: Régularisation d'inéquations variationnelles par approximations successives.Rev. Franç. Inform. Rech. Opér. 4 (1970), 154-158 French. Zbl 0215.21103, MR 0298899
Reference: [30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447-454. Zbl 1027.65077, MR 1984300, 10.1016/S0377-0427(02)00906-8
Reference: [31] Passty, G. B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space.J. Math. Anal. Appl. 72 (1979), 383-390. Zbl 0428.47039, MR 0559375, 10.1016/0022-247X(79)90234-8
Reference: [32] Pesquet, J.-C., Pustelnik, N.: A parallel inertial proximal optimization method.Pac. J. Optim. 8 (2012), 273-306. Zbl 1259.47080, MR 2954380
Reference: [33] Polyak, B. T.: Some methods of speeding up the convergence of iterative methods.U.S.S.R. Comput. Math. Math. Phys. 4 (1967), 1-17 translation from Zh. Vychisl. Mat. Mat. Fiz. 4 1964 791-803. Zbl 0147.35301, MR 0169403, 10.1016/0041-5553(64)90137-5
Reference: [34] Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces.J. Math. Anal. Appl. 75 (1980), 287-292. Zbl 0437.47047, MR 0576291, 10.1016/0022-247X(80)90323-6
Reference: [35] Rockafellar, R. T.: Monotone operators and the proximal point algorithm.SIAM J. Control Optim. 14 (1976), 877-898. Zbl 0358.90053, MR 0410483, 10.1137/0314056
Reference: [36] Shehu, Y.: Iterative approximations for zeros of sum of accretive operators in Banach spaces.J. Funct. Spaces 2016 (2016), Article ID 5973468, 9 pages. Zbl 1337.47096, MR 3459658, 10.1155/2016/5973468
Reference: [37] Shehu, Y., Cai, G.: Strong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applications.Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112 (2018), 71-87. Zbl 06836237, MR 3742991, 10.1007/s13398-016-0366-3
Reference: [38] Suantai, S., Pholasa, N., Cholamjiak, P.: The modified inertial relaxed CQ algorithm for solving the split feasibility problems.J. Ind. Manag. Optim. 14 (2018), 1595-1615. MR 3917875, 10.3934/jimo.2018023
Reference: [39] Sunthrayuth, P., Cholamjiak, P.: Iterative methods for solving quasi-variational inclusion and fixed point problem in $q$-uniformly smooth Banach spaces.Numer. Algorithms 78 (2018), 1019-1044. Zbl 06916361, MR 3827320, 10.1007/s11075-017-0411-0
Reference: [40] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings.SIAM J. Control Optim. 38 (2000), 431-446. Zbl 0997.90062, MR 1741147, 10.1137/S0363012998338806
Reference: [41] Wei, L., Agarwal, R. P.: A new iterative algorithm for the sum of infinite $m$-accretive mappings and infinite $\mu_i$-inversely strongly accretive mappings and its applications to integro-differential systems.Fixed Point Theory Appl. 2016 (2016), Article ID 7, 22 pages. Zbl 1346.47071, MR 3441542, 10.1186/s13663-015-0495-y
Reference: [42] Xu, H.-K.: Inequalities in Banach spaces with applications.Nonlinear Anal., Theory Methods Appl. 16 (1991), 1127-1138. Zbl 0757.46033, MR 1111623, 10.1016/0362-546X(91)90200-K
.

Files

Files Size Format View
AplMat_64-2019-4_3.pdf 530.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo