Previous |  Up |  Next

Article

Title: Inverse source problem in a space fractional diffusion equation from the final overdetermination (English)
Author: Salehi Shayegan, Amir Hossein
Author: Bayat Tajvar, Reza
Author: Ghanbari, Alireza
Author: Safaie, Ali
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 4
Year: 2019
Pages: 469-484
Summary lang: English
.
Category: math
.
Summary: We consider the problem of determining the unknown source term $ f=f(x,t) $ in a space fractional diffusion equation from the measured data at the final time $ u(x,T) = \psi (x) $. In this way, a methodology involving minimization of the cost functional $ J(f) = \int _0^l ( u(x,t;f )|_{t = T} - \psi (x)) ^2 {\rm d}x$ is applied and shown that this cost functional is Fréchet differentiable and its derivative can be formulated via the solution of an adjoint problem. In addition, Lipschitz continuity of the gradient is proved. These results help us to prove the monotonicity and convergence of the sequence $\{J'(f^{(n)}) \}$, where $ f^{(n)} $ is the $ n$th iteration of a gradient like method. At the end, the convexity of the Fréchet derivative is given. (English)
Keyword: inverse source problem
Keyword: space fractional diffusion equation
Keyword: weak solution theory
Keyword: adjoint problem
Keyword: Lipschitz continuity
MSC: 65N20
MSC: 65N21
idZBL: Zbl 07088751
idMR: MR3987228
DOI: 10.21136/AM.2019.0251-18
.
Date available: 2019-07-24T11:24:37Z
Last updated: 2021-09-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147800
.
Reference: [1] Bushuyev, I.: Global uniqueness for inverse parabolic problems with final observation.Inverse Probl. 11 (1995), L11--L16. Zbl 0840.35120, MR 1345998, 10.1088/0266-5611/11/4/001
Reference: [2] Choulli, M.: An inverse problem for a semilinear parabolic equation.Inverse Probl. 10 (1994), 1123-1132. Zbl 0807.35154, MR 1296363, 10.1088/0266-5611/10/5/009
Reference: [3] Choulli, M., Yamamoto, M.: Generic well-posedness of an inverse parabolic problem---the Hölder-space approach.Inverse Probl. 12 (1996), 195-205. Zbl 0851.35133, MR 1391534, 10.1088/0266-5611/12/3/002
Reference: [4] Feng, L. B., Zhuang, P., Liu, F., Turner, I., Gu, Y. T.: Finite element method for space-time fractional diffusion equation.Numer. Algorithms 72 (2016), 749-767. Zbl 1343.65122, MR 3514786, 10.1007/s11075-015-0065-8
Reference: [5] Ford, N. J., Xiao, J., Yan, Y.: A finite element method for time fractional partial differential equations.Fract. Calc. Appl. Anal. 14 (2011), 454-474. Zbl 1273.65142, MR 2837641, 10.2478/s13540-011-0028-2
Reference: [6] Hasanov, A.: Simultaneous determination of source terms in a linear parabolic problem from the final overdetermination: Weak solution approach.J. Math. Anal. Appl. 330 (2007), 766-779. Zbl 1120.35083, MR 2308406, 10.1016/j.jmaa.2006.08.018
Reference: [7] Hasanoğlu, A. Hasanov, Romanov, V. G.: Introduction to Inverse Problems for Differential Equations.Springer, Cham (2017). Zbl 1385.65053, MR 3676924, 10.1007/978-3-319-62797-7
Reference: [8] Isakov, V.: Inverse parabolic problems with the final overdetermination.Commun. Pure Appl. Math. 54 (1991), 185-209. Zbl 0729.35146, MR 1085828, 10.1002/cpa.3160440203
Reference: [9] Kaya, M.: Determination of the unknown source term in a linear parabolic problem from the measured data at the final time.Appl. Math., Praha 59 (2014), 715-728. Zbl 1340.35384, MR 3277735, 10.1007/s10492-014-0081-3
Reference: [10] Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation.SIAM J. Numer. Anal. 47 (2009), 2108-2131. Zbl 1193.35243, MR 2519596, 10.1137/080718942
Reference: [11] Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation.Commun. Comput. Phys. 8 (2010), 1016-1051. Zbl 1364.35424, MR 2674276, 10.4208/cicp.020709.221209a
Reference: [12] Meerschaert, M. M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations.J. Comput. Appl. Math. 172 (2004), 65-77. Zbl 1126.76346, MR 2091131, 10.1016/j.cam.2004.01.033
Reference: [13] Metzler, R., Klafter, J.: The random walk's guide to anomalous diffusion: A fractional dynamics approach.Phys. Rep. 339 (2000), 1-77. Zbl 0984.82032, MR 1809268, 10.1016/s0370-1573(00)00070-3
Reference: [14] Shayegan, A. H. Salehi, Zakeri, A.: A numerical method for determining a quasi solution of a backward time-fractional diffusion equation.Inverse Probl. Sci. Eng. 26 (2018), 1130-1154. Zbl 07039161, MR 3802827, 10.1080/17415977.2017.1384826
Reference: [15] Tian, W. Y., Li, C., Deng, W., Wu, Y.: Regularization methods for unknown source in space fractional diffusion equation.Math. Comput. Simul. 85 (2012), 45-56. Zbl 1260.35246, MR 2999850, 10.1016/j.matcom.2012.08.011
Reference: [16] Zeghal, A.: Existence results for inverse problems associated with a nonlinear parabolic equation.J. Math. Anal. Appl. 272 (2002), 240-248. Zbl 1007.35104, MR 1930713, 10.1016/s0022-247x(02)00155-5
.

Files

Files Size Format View
AplMat_64-2019-4_5.pdf 314.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo