Previous |  Up |  Next

Article

Title: On some properties of the upper central series in Leibniz algebras (English)
Author: Kurdachenko, Leonid A.
Author: Otal, Javier
Author: Subbotin, Igor Ya.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 161-175
Summary lang: English
.
Category: math
.
Summary: This article discusses the Leibniz algebras whose upper hypercenter has finite codimension. It is proved that such an algebra $L$ includes a finite dimensional ideal $K$ such that the factor-algebra $L/K$ is hypercentral. This result is an extension to the Leibniz algebra of the corresponding result obtained earlier for Lie algebras. It is also analogous to the corresponding results obtained for groups and modules. (English)
Keyword: Leibniz algebra
Keyword: Lie algebra
Keyword: center
Keyword: central serie
Keyword: hypercenter
Keyword: nilpotent residual
MSC: 17A32
MSC: 17A60
MSC: 17A99
idZBL: Zbl 07144885
idMR: MR3982464
DOI: 10.14712/1213-7243.2019.009
.
Date available: 2019-08-05T09:42:24Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147813
.
Reference: [1] Baer R.: Endlichkeitskriterien für Kommutatorgruppen.Math. Ann. 124 (1952), 161–177 (German). MR 0045720, 10.1007/BF01343558
Reference: [2] Ballester-Bolinches A., Camp-Mora S., Kurdachenko L. A., Otal J.: Extension of a Schur theorem to groups with a central factor with a bounded section rank.J. Algebra 393 (2013), 1–15. Zbl 1294.20045, MR 3090052, 10.1016/j.jalgebra.2013.06.035
Reference: [3] Chupordia V. A., Kurdachenko L. A., Subbotin I. Ya.: On some “minimal" Leibniz algebras.J. Algebra Appl. 16 (2017), no. 5, 1750082, 16 pages. MR 3634087, 10.1142/S0219498817500827
Reference: [4] Dixon M. R., Kurdachenko L. A., Otal J.: On groups whose factor-group modulo the hypercentre has finite section $p$-rank.J. Algebra 440 (2015), 489–503. MR 3373402, 10.1016/j.jalgebra.2015.06.005
Reference: [5] Dixon M. R., Kurdachenko L. A., Otal J.: On the structure of some infinite dimensional linear groups.Comm. Algebra 45 (2017), no. 1, 234–246. MR 3556568, 10.1080/00927872.2016.1175593
Reference: [6] de Falco M., de Giovanni F., Musella C., Sysak Y. P.: On the upper central series of infinite groups.Proc. Amer. Math. Soc. 139 (2011), no. 2, 385–389. MR 2736322, 10.1090/S0002-9939-2010-10625-1
Reference: [7] Franciosi S., de Giovanni F., Kurdachenko L. A.: The Schur property and groups with uniform conjugacy classes.J. Algebra 174 (1995), no. 3, 823–847. MR 1337173, 10.1006/jabr.1995.1155
Reference: [8] Kurdachenko L. A., Otal J., Pypka A. A.: Relationships between factors of canonical central series of Leibniz algebras.Eur. J. Math. 2 (2016), no. 2, 565–577. MR 3499000, 10.1007/s40879-016-0093-5
Reference: [9] Kurdachenko L. A., Otal J., Subbotin I. Ya.: On a generalization of Baer theorem.Proc. Amer. Math. Soc. 141 (2013), no. 8, 2597–2602. MR 3056549
Reference: [10] Kurdachenko L. A., Pypka A. A., Subbotin I. Ya.: On some relations between the factors of the upper and lower central series in Lie algebras.Serdica Math. J. 41 (2015), no. 2–3, 293–306. MR 3363607
Reference: [11] Kurdachenko L. A., Shumyatsky P.: The ranks of central factor and commutator groups.Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 63–69. MR 3002583, 10.1017/S0305004112000412
Reference: [12] Kurdachenko L. A., Subbotin I. Ya.: On the relationships between the factors of upper and lower central series in groups and other algebraic structures.Note Mat. 36 (2016), suppl. 1, 35–50. MR 3601080
Reference: [13] Neumann B. H.: Groups with finite classes of conjugate elements.Proc. London Math. Soc. (3) 1 (1951), 178–187. Zbl 0043.02401, MR 0043779
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_1.pdf 306.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo