Previous |  Up |  Next

Article

Title: Artinianness of formal local cohomology modules (English)
Author: Rezaei, Shahram
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 2
Year: 2019
Pages: 177-185
Summary lang: English
.
Category: math
.
Summary: Let ${\frak{a}}$ be an ideal of Noetherian local ring $(R,{\frak{m}})$ and $M$ a finitely generated $R$-module of dimension $d$. In this paper we investigate the Artinianness of formal local cohomology modules under certain conditions on the local cohomology modules with respect to ${\frak{m}}$. Also we prove that for an arbitrary local ring $(R,{\frak{m}})$ (not necessarily complete), we have ${\rm Att}_R(\mathfrak{F}_{\frak{a}}^d(M)) ={\rm Min} {\rm V}({\rm Ann}_R \mathfrak{F}_{\frak{a}}^d(M)).$ (English)
Keyword: formal local cohomology
Keyword: local cohomology
MSC: 13D45
MSC: 13E99
idZBL: Zbl 07144886
idMR: MR3982465
DOI: 10.14712/1213-7243.2019.006
.
Date available: 2019-08-05T09:43:25Z
Last updated: 2021-07-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147819
.
Reference: [1] Asgharzadeh M., Divaani-Aazar K.: Finiteness properties of formal local cohomology modules and Cohen-Macaulayness.Comm. Algebra 39 (2011), no. 3, 1082–1103. MR 2810597, 10.1080/00927871003610312
Reference: [2] Bijan-Zadeh M. H., Rezaei S.: Artinianness and attached primes of formal local cohomology modules.Algebra Colloq. 21 (2014), no. 2, 307–316. MR 3192350
Reference: [3] Brodmann M., Sharp R. Y.: Local cohomology: an algebraic introduction with geometric applications.Cambridge Studies in Advanced Mathematics, 60, Cambridge University Press, 1998. MR 1613627
Reference: [4] Eghbali M.: On Artinianness of formal local cohomology, colocalization and coassociated primes.Math. Scand. 113 (2013), no. 1, 5–19. MR 3105540, 10.7146/math.scand.a-15478
Reference: [5] MacDonald I. G.: Secondary representations of modules over a commutative ring.Symposia Mathematica, Vol. XI, Convegno di Algebra Commutativa, INDAM, Rome, 1971, Academic Press, London, 1973, pages 23–43. MR 0342506
Reference: [6] Macdonald I. G., Sharp R. Y.: An elementary proof of the non-vanishing of certain local cohomology modules.Quart. J. Math. Oxford Ser. (2) 23 (1972), 197–204. MR 0299598, 10.1093/qmath/23.2.197
Reference: [7] Melkersson L., Schenzel P.: The co-localization of an Artinian module.Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 1, 121–131. MR 1317331
Reference: [8] Peskine C., Szpiro L.: Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck.Inst. Hautes Études Sci. Publ. Math. No. 42 (1972), 47–119 (French). MR 0374130, 10.1007/BF02685877
Reference: [9] Rezaei S.: Minimaxness and finiteness properties of formal local cohomology modules.Kodai Math. J. 38 (2015), no. 2, 430–436. MR 3368073, 10.2996/kmj/1436403898
Reference: [10] Rezaei S.: Some results on top local cohomolgy and top formal local cohomology modules.Comm. Algebra 45 (2017), no. 5, 1935–1940. MR 3582837, 10.1080/00927872.2016.1226867
Reference: [11] Schenzel P.: On formal local cohomology and connectedness.J. Algebra 315 (2007), no. 2, 894–923. MR 2351900, 10.1016/j.jalgebra.2007.06.015
Reference: [12] Sharp R. Y.: Some results on the vanishing of local cohomology modules.Proc. London Math. Soc. (3) 30 (1975), 177–195. MR 0379474
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-2_2.pdf 259.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo