Previous |  Up |  Next

Article

Title: Invariant symbolic calculus for compact Lie groups (English)
Author: Cahen, Benjamin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 3
Year: 2019
Pages: 139-155
Summary lang: English
.
Category: math
.
Summary: We study the invariant symbolic calculi associated with the unitary irreducible representations of a compact Lie group. (English)
Keyword: compact Lie group
Keyword: invariant symbolic calculus
Keyword: coadjoint orbit
Keyword: unitary representation
Keyword: Berezin quantization
Keyword: Weyl quantization
MSC: 22E45
MSC: 22E46
MSC: 81R05
MSC: 81S10
idZBL: Zbl 07138659
idMR: MR3994322
DOI: 10.5817/AM2019-3-139
.
Date available: 2019-08-05T08:43:18Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147821
.
Reference: [1] Ali, S.T., Englis, M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (4) (2005), 391–490. Zbl 1075.81038, MR 2151954, 10.1142/S0129055X05002376
Reference: [2] Arazy, J., Upmeier, H.: Weyl Calculus for Complex and Real Symmetric Domains.Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. MR 1984098
Reference: [3] Arazy, J., Upmeier, H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
Reference: [4] Arnal, D., Cahen, M., Gutt, S.: Representations of compact Lie groups and quantization by deformation.Acad. R. Belg. Bull. Cl. Sc. 3e série LXXIV 45 (1988), 123–140. MR 1027456
Reference: [5] Bekka, M.B., de la Harpe, P.: Irreducibility of unitary group representations and reproducing kernels Hilbert spaces.Expo. Math. 21 (2) (2003), 115–149. MR 1978060, 10.1016/S0723-0869(03)80014-2
Reference: [6] Berezin, F.A.: Quantization.Math. USSR Izv. 8 (5) (1974), 1109–1165. Zbl 0312.53049, MR 0395610
Reference: [7] Berezin, F.A.: Quantization in complex symmetric domains.Math. USSR Izv. 9 (2) (1975), 341–379. 10.1070/IM1975v009n02ABEH001480
Reference: [8] Brif, C., Mann, A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries.Phys. Rev. A 59 (2) (1999), 971–987. MR 1679730, 10.1103/PhysRevA.59.971
Reference: [9] Cahen, B.: Contractions of $SU(1,n)$ and $SU(n+1)$ via Berezin quantization.J. Anal. Math. 97 (2005), 83–101. MR 2274974, 10.1007/BF02807403
Reference: [10] Cahen, B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), 66–84. Zbl 1183.22006, MR 2549798, 10.7146/math.scand.a-15106
Reference: [11] Cahen, B.: Stratonovich-Weyl correspondence for compact semisimple Lie groups.Rend. Circ. Mat. Palermo 59 (2010), 331–354. Zbl 1218.22008, MR 2745515, 10.1007/s12215-010-0026-y
Reference: [12] Cahen, B.: Berezin quantization and holomorphic representations.Rend. Sem. Mat. Univ. Padova 129 (2013), 277–297. MR 3090642, 10.4171/RSMUP/129-16
Reference: [13] Cahen, B.: Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group.Rend. Sem. Mat. Univ. Padova 136 (2016), 69–93. MR 3593544, 10.4171/RSMUP/136-7
Reference: [14] Cahen, M., Gutt, S., Rawnsley, J.: Quantization on Kähler manifolds I, Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y
Reference: [15] Cariñena, J.F., Gracia-Bondìa, J.M., Vàrilly, J.C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A: Math. Gen. 23 (1990), 901–933. Zbl 0706.60108, MR 1048769, 10.1088/0305-4470/23/6/015
Reference: [16] Englis, M.: Berezin transform on pluriharmonic Bergmann spaces.Trans. Amer. Math. Soc. 361 (2009), 1173–1188. MR 2457394, 10.1090/S0002-9947-08-04653-9
Reference: [17] Figueroa, H., Gracia-Bondìa, J.M., Vàrilly, J.C.: Moyal quantization with compact symmetry groups and noncommutative analysis.J. Math. Phys. 31 (1990), 2664–2671. MR 1075750, 10.1063/1.528967
Reference: [18] Folland, B.: Harmonic Analysis in Phase Space.Princeton Univ. Press, 1989. Zbl 0682.43001, MR 0983366
Reference: [19] Gracia-Bondìa, J.M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation theory and quantum groups with applications to mathematical physics, Amherst, MA, 1990, Contemp. Math., 134, Amer. Math. Soc., Providence, RI, 1992, pp. 93–114. MR 1187280
Reference: [20] Gracia-Bondìa, J.M., Vàrilly, J.C.: The Moyal representation for spin.Ann. Physics 190 (1989), 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5
Reference: [21] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl 0993.53002, MR 1834454, 10.1090/gsm/034
Reference: [22] Kirillov, A.A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR 2069175, 10.1090/gsm/064
Reference: [23] Kobayashi, T.: Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs.Representation theory and automorphic forms, vol. 255, Birkhäuser Boston, Boston, MA, Progr. Math. ed., 2008, pp. 45–109. MR 2369496
Reference: [24] Kostant, B.: Quantization and unitary representations.Lecture Notes in Math., vol. 170, Springer-Verlag, Berlin, Heidelberg, New-York, Modern Analysis and Applications ed., 1970, pp. 87–207. Zbl 0223.53028, MR 0294568
Reference: [25] Neeb, K-H.: Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics.vol. 28, Walter de Gruyter, Berlin, New-York, 2000. MR 1740617
Reference: [26] Nomura, T.: Berezin transforms and group representations.J. Lie Theory 8 (1998), 433–440. MR 1650386
Reference: [27] Ørsted, B., Zhang, G.: Weyl quantization and tensor products of Fock and Bergman spaces.Indiana Univ. Math. J. 43 (2) (1994), 551–583. MR 1291529, 10.1512/iumj.1994.43.43023
Reference: [28] Stembridge, J.R.: Multiplicity-free products and restrictions of Weyl characters.Representation Theory 7 (2003), 404–439. MR 2017064, 10.1090/S1088-4165-03-00150-X
Reference: [29] Stratonovich, R.L.: On distributions in representation space.Soviet Physics. JETP 4 (1957), 891–898. MR 0088173
Reference: [30] Unterberger, A., Upmeier, H.: Berezin transform and invariant differential operators.Commun. Math. Phys. 164 (3) (1994), 563–597. Zbl 0843.32019, MR 1291245, 10.1007/BF02101491
Reference: [31] Wallach, N.R.: Harmonic Analysis on Homogeneous Spaces.Marcel Dekker, Inc., 1973. MR 0498996
Reference: [32] Wildberger, N.J.: On the Fourier transform of a compact semi simple Lie group.J. Austral. Math. Soc. A 56 (1994), 64–116. MR 1250994, 10.1017/S1446788700034741
Reference: [33] Zhang, G.: Berezin transform on compact Hermitian symmetric spaces.Manuscripta Math. 97 (1998), 371–388. Zbl 0920.22008, MR 1654800, 10.1007/s002290050109
.

Files

Files Size Format View
ArchMathRetro_055-2019-3_1.pdf 563.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo