Previous |  Up |  Next

Article

Title: Existence and reduction of generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials (English)
Author: Navas, Luis M.
Author: Ruiz, Francisco J.
Author: Varona, Juan L.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 3
Year: 2019
Pages: 157-165
Summary lang: English
.
Category: math
.
Summary: One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$. (English)
Keyword: Bernoulli polynomials
Keyword: Nørlund polynomials
Keyword: Apostol-Bernoulli polynomials
Keyword: Apostol-Euler polynomials
Keyword: Apostol-Genocchi polynomials
Keyword: generating functions
Keyword: Appell sequences
MSC: 05A15
MSC: 11B68
idZBL: Zbl 07138660
idMR: MR3994323
DOI: 10.5817/AM2019-3-157
.
Date available: 2019-08-05T08:44:27Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147823
.
Reference: [1] Apostol, T.: On the Lerch Zeta function, Addendum.Pacific J. Math. 1 (1951), 161–167, Pacific J. Math. 2 (1952), 10. MR 0043843, 10.2140/pjm.1951.1.161
Reference: [2] Bayad, A.: Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials.Math. Comp. 80 (2011), 2219–2221. MR 2813356, 10.1090/S0025-5718-2011-02476-2
Reference: [3] Hernández-Llanos, P., Quintana, Y., Urieles, A.: About extensions of generalized Apostol-type polynomials.Results Math. 68 (2015), 203–225. MR 3391500, 10.1007/s00025-014-0430-2
Reference: [4] Horadam, A.F.: Genocchi polynomials.Applications of Fibonacci Numbers (G. E. Bergum, A. N. Philippou, Horadam, A. F., eds.), vol. 4, Kluwer, 1991, pp. 145–166. MR 1193711
Reference: [5] Kurt, B.: Some relationships between the generalized Apostol-Bernoulli and Apostol-Euler polynomials.Turkish Journal of Analysis and Number Theory 1 (2013), 54–58. 10.12691/tjant-1-1-11
Reference: [6] Luo, Q.-M.: Fourier expansions and integral representations for the Apostol-Bernoulli and Apostol-Euler polynomials.Math. Comp. 78 (2009), 2193–2208. MR 2521285, 10.1090/S0025-5718-09-02230-3
Reference: [7] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials.J. Math. Anal. Appl. 308 (2005), 290–302. MR 2142419, 10.1016/j.jmaa.2005.01.020
Reference: [8] Luo, Q.-M., Srivastava, H.M.: Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind.Appl. Math. Comput. 217 (2011), 5702–5728. MR 2770190
Reference: [9] Navas, L.M., Ruiz, F.J., Varona, J.L.: Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials.Math. Comp. 81 (2012), 1707–1722. MR 2904599, 10.1090/S0025-5718-2012-02568-3
Reference: [10] Nørlund, N.E.: Mémoire sur les polynômes de Bernoulli.Acta Math. 43 (1922), 121–196. MR 1555176, 10.1007/BF02401755
Reference: [11] Nørlund, N.E.: Vorlesungen über Differenzenrechnung.1st ed., Springer-Verlag, Berlin-Heidelberg, 1924. MR 1549596
Reference: [12] Srivastava, H.M., Choi, J.: Zeta and $q$-zeta functions and associated series and integrals.Elsevier, 2012. MR 3294573
Reference: [13] Srivastava, H.M., Kurt, B., Simsek, Y.: Corrigendum: Some families of Genocchi type polynomials and their interpolation functions.Integral Transforms Spec. Funct. 23 (2012), 939–940. MR 2998907, 10.1080/10652469.2012.690950
.

Files

Files Size Format View
ArchMathRetro_055-2019-3_2.pdf 492.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo