Previous |  Up |  Next

Article

Title: A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space (English)
Author: Jolaoso, L.O.
Author: Abass, H.A.
Author: Mewomo, O.T.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 3
Year: 2019
Pages: 167-194
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of $\delta $-demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition $\sum _{n=1}^\infty \beta _n\Vert x_{n-1} -x_n\Vert < + \infty $ on the inertial term. Finally, we provide some applications and numerical example to show the efficiency and accuracy of our algorithm. Our results improve and complement many other related results in the literature. (English)
Keyword: proximal gradient algorithm
Keyword: proximal operator
Keyword: demimetric mappings
Keyword: inertial algorithm
Keyword: viscosity approximation
Keyword: Meir Keeler contraction
Keyword: fixed point theory
MSC: 46N10
MSC: 47H10
MSC: 47J25
MSC: 65K10
MSC: 65K15
idZBL: Zbl 07138661
idMR: MR3994324
DOI: 10.5817/AM2019-3-167
.
Date available: 2019-08-05T08:48:05Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147824
.
Reference: [1] Abass, H.A., Ogbuisi, F.U., Mewomo, O.T.: Common solution of split equilibrium problem and fixed point problem with no prior knowledge of operator norm.U.P.B. Sci. Bull., Series A 80 (1) (2018), 175–190. MR 3785191
Reference: [2] Alvarez, F., Attouch, H.: An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping.Set-Valued Anal. 9 (2001), 3–11. MR 1845931, 10.1023/A:1011253113155
Reference: [3] Beck, A., Teboull, M.: Gradient-based algorithms with applications to signal-recovery problems.Convex optimization in signal processing and communications (Palomar, D., Elder, Y., eds.), Cambridge Univ. Press, Cambridge, 2010, pp. 42–88. MR 2767564
Reference: [4] Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problem.SIAM J. Imaging Sci. 2 (1) (2009), 183–202. MR 2486527, 10.1137/080716542
Reference: [5] Bot, R.I., Csetnek, E.R.: An inerial Tseng’s type proximal point algorithm for nonsmooth and nonconvex optimization problem.J. Optim. Theory Appl. 171 (2016), 600–616. MR 3557440, 10.1007/s10957-015-0730-z
Reference: [6] Bot, R.I., Csetnek, E.R., Laszlo, S.C.: An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions.EJCO 4 (2016), 3–25. MR 3500980
Reference: [7] Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction.Inverse Problems 20 (2004), 103–120. MR 2044608, 10.1088/0266-5611/20/1/006
Reference: [8] Cai, G., Shehu, Y.: An iterative algorithm for fixed point problem and convex minimization problem with applications.Fixed Point Theory and Appl. 2015 123 (2015), 18 pp. MR 3303116
Reference: [9] Ceng, L.-C., Ansari, Q.H., Ya, J.-C.: Some iterative methods for finding fixed points and for solving constrained convex minimization problems.Nonlinear Anal. 74 (2011), 5286–5302. MR 2819274, 10.1016/j.na.2011.05.005
Reference: [10] Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space.Numer. Algorithms 8 (2–4) (1994), 221–239. Zbl 0828.65065, MR 1309222, 10.1007/BF02142692
Reference: [11] Chambolle, A., Dossal, C.: On the convergence of the iterates of the fast iterative shrinkage thresholding algorithm.J. Optim. Theory Appl. 166 (2015), 968–982. MR 3375610, 10.1007/s10957-015-0746-4
Reference: [12] Chan, R.H., Ma, S., Jang, J.F.: Inertial proximal ADMM for linearly constrained separable convex optimization.SIAM J. Imaging Sci. 8 (4) (2015), 2239–2267. MR 3404682, 10.1137/15100463X
Reference: [13] Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators.Optimization 53 (2004), 475–504. MR 2115266, 10.1080/02331930412331327157
Reference: [14] Combettes, P.L., Pesquet, J.-C.: Proximal Splitting Methods in Signal Processing.Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp. 185–212. MR 2858838
Reference: [15] Fichera, G.: Problemi elastostatic con vincoli unilaterli: II Problema di signorini con ambigue condizioni al contorno.Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. I (8) 7 (1963/1964), 91–140. MR 0178631
Reference: [16] Geobel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory.Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, Cambridge, 1990. MR 1074005
Reference: [17] Guo, Y., Cui, W.: Strong convergence and bounded perturbation resilence of a modified proximal gradient algorithm.J. Ineq. Appl. 2018 (2018). MR 3797139, 10.1186/s13660-018-1695-x
Reference: [18] Izuchukwu, C., Ugwunnadi, G.C., Mewomo, O.T., Khan, A.R., Abbas, M.: Proximal-type algorithms for split minimization problem in P-uniformly convex metric spaces.Numer. Algorithms (2018), https://doi.org/10.1007/s11075-018-0633-9. MR 4027651, 10.1007/s11075-018-0633-9
Reference: [19] Jolaoso, L.O., Ogbuisi, F.U., Mewomo, O.T.: An iterative method for solving minimization, variational inequality and fixed point problems in reflexive Banach spaces.Adv. Pure Appl. Math. 9 (3) (2018), 167–183. MR 3819533, 10.1515/apam-2017-0037
Reference: [20] Jolaoso, L.O., Oyewole, K.O., Okeke, C.C., Mewomo, O.T.: A unified algorithm for solving split generalized mixed equilibrium problem and fixed point of nonspreading mapping in Hilbert space.Demonstratio Math. 51 (2018), 211–232. MR 3856588, 10.1515/dema-2018-0015
Reference: [21] Jolaoso, L.O., Taiwo, A., Alakoya, T.O., Mewomo, O.T.: A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize.Demonstratio Math. 52 (1) (2019), 183–203. MR 3938331
Reference: [22] Lions, J.L., Stampacchia, G.: Variational inequalities.Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl 0152.34601, MR 0216344, 10.1002/cpa.3160200302
Reference: [23] Lorenz, D., Pock, T.: An inertial forward-backward algorithm for monotone inclusions.J. Math. Imaging Vision 51 (2) (2015), 311–325. MR 3314536, 10.1007/s10851-014-0523-2
Reference: [24] Maingé, P.E.: Approximation methods for common fixed points of nonexpansive mappings in Hilbert spaces.J. Math. Anal. Appl. 325 (2007), 469–479. MR 2273538, 10.1016/j.jmaa.2005.12.066
Reference: [25] Maingé, P.E.: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization.Set-Valued Anal. 16 (2008), 899–912. MR 2466027, 10.1007/s11228-008-0102-z
Reference: [26] Martinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed-point iteration processes.Nonlinear Anal. 64 (2006), 2400–2411. MR 2215815, 10.1016/j.na.2005.08.018
Reference: [27] Meir, A., Keeler, E.: A theorem on contraction mappings.J. Math. Anal. Appl. 28 (1969), 326–329. MR 0250291, 10.1016/0022-247X(69)90031-6
Reference: [28] Mewomo, O.T., Ogbuisi, F.U.: Convergence analysis of iterative method for multiple set split feasibility problems in certain Banach spaces.Quaestiones Math. 41 (1) (2018), 129–148. MR 3761493, 10.2989/16073606.2017.1375569
Reference: [29] Moudafi, A.: Viscosity approximation method for fixed-points problems.J. Math. Anal. Appl. 241 (1) (2000), 46–55. MR 1738332, 10.1006/jmaa.1999.6615
Reference: [30] Moudafi, A., Oliny, M.: Convergence of a splitting inertial proximal method for monotone operators.J. Comput. Appl. Math. 155 (2003), 447–454. MR 1984300, 10.1016/S0377-0427(02)00906-8
Reference: [31] Moudafi, A., Thakur, B.S.: Solving proximal split feasibility problems without prior knowledge of operator norms.Optim. Lett. 8 (7) (2014), 2099–2110. MR 3263242, 10.1007/s11590-013-0708-4
Reference: [32] Nesterov, Y.: A method for solving the convex programming problem with convergence rate $0(\frac{1}{k^2})$.Dokl. Akad. Nauk SSSR 269 (3) (1983), 543–547. MR 0701288
Reference: [33] Ogbuisi, F.U., Mewomo, O.T.: On split generalized mixed equilibrium problems and fixed point problems with no prior knowledge of operator norm.J. Fixed Point Theory Appl. 19 (3) (2016), 2109–2128. MR 3692443, 10.1007/s11784-016-0397-6
Reference: [34] Ogbuisi, F.U., Mewomo, O.T.: Iterative solution of split variational inclusion problem in a real Banach space.Afrika Mat. (3) 28 (1–2) (2017), 295–309. MR 3613639, 10.1007/s13370-016-0450-z
Reference: [35] Ogbuisi, F.U., Mewomo, O.T.: Convergence analysis of common solution of certain nonlinear problems.Fixed Point Theory 19 (1) (2018), 335–358. MR 3754008, 10.24193/fpt-ro.2018.1.26
Reference: [36] Okeke, C.C., Mewomo, O.T.: On split equilibrim problem, variational inequality problem and fixed point problem for multi-valued mappings.Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2) (2017), 255–280. MR 3742495
Reference: [37] Parith, N., Boyd, S.: Proximal algorithms.Foundations and Trends in Optimization 1 (3) (2013), 123–231.
Reference: [38] Pesquet, J.-C., Putselnik, N.: A parallel inertial proximal optimization method.Pacific J. Optim. 8 (2) (2012), 273–306. MR 2954380
Reference: [39] Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.U.S.S.R. Comput. Math. Math. Phys. 4 (5) (1964), 1–17. MR 0169403, 10.1016/0041-5553(64)90137-5
Reference: [40] Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators.Trans. Amer. Math. Soc. 149 (1970), 75–88. MR 0282272, 10.1090/S0002-9947-1970-0282272-5
Reference: [41] Rockafellar, R.T., Wets, R.: Variational Analysis.Springer, Berlin, 1988.
Reference: [42] Shehu, Y.: Approximation of solutions to constrained convex minimization problem in Hilbert spaces.Vietnam J. Math. (2014), DOI 10.1007/s10013-014-0091-1. MR 3386057, 10.1007/s10013-014-0091-1
Reference: [43] Stampacchia, G.: Formes bilinearies coercitives sur les ensembles convexes.Comput. Rend. Acad. Sci. Paris 258 (1964), 4413–4416. MR 0166591
Reference: [44] Su, M., Xu, H.K.: Remarks on the gradient-projection algorithm.J. Nonlinear Anal. Optim. 1 (1) (2010), 35–43. MR 2911685
Reference: [45] Suzuki, T.: Moudai’s viscosity approximations with Meir-Keeler contractions.J. Math. Anal. Appl. 325 (2007), 342–352. MR 2273529, 10.1016/j.jmaa.2006.01.080
Reference: [46] Takahashi, W., Wen, C.-F., Yao, J.-C.: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space.Fixed Point Theory 19 (1) (2018), 407–420. MR 3754014, 10.24193/fpt-ro.2018.1.32
Reference: [47] Tian, M., Huang, L.H.: A general approximation method for a kind of convex optimization problems in Hilbert spaces.J. Appl. Math. 2014 (2014), 9 pages, Article ID 156073. MR 3198359
Reference: [48] Xu, H.K.: Viscosity approximation method for nonexpansive mappings.J. Math. Anal. Appl. 298 (1) (2004), 279–291. MR 2086546, 10.1016/j.jmaa.2004.04.059
Reference: [49] Xu, H.K.: Average mappings and the gradient projection algorithm.J. Optim. Theory Appl. 150 rm (2) (2011), 360–378. MR 2818926, 10.1007/s10957-011-9837-z
.

Files

Files Size Format View
ArchMathRetro_055-2019-3_3.pdf 1.040Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo