[3] Agrawal, O. P., Baleanu, D. A.:
Hamiltonian formulation and direct numerical scheme for fractional optimal control problems. J. Vibration Control 13 (2007), 9-10, 1269-1281.
DOI 10.1177/1077546307077467 |
MR 2356715
[4] Al-Refai, M., Luchko, Yu.:
Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications. Fract. Calc. Appl. Anal. 17 (2014), 2, 483-498.
DOI 10.2478/s13540-014-0181-5 |
MR 3181067
[5] Al-Refai, M., Luchko, Yu.:
Maximum principle for the multi-term time fractional diffusion equations with the Riemann-Liouville fractional derivatives. Appl. Math. Comput. 257 (2015), 40-51.
DOI 10.1016/j.amc.2014.12.127 |
MR 3320647
[6] Al-Refai, M., Luchko, Yu.:
Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications. Analysis 36 (2016), 123-133.
DOI 10.1515/anly-2015-5011 |
MR 3491861
[7] Bahaa, G. M.:
Fractional optimal control problem for variational inequalities with control constraints. IMA J. Math. Control Inform. 35 (2018), 1, 107-122.
DOI 10.1186/s13662-016-0976-2 |
MR 3802084
[8] Bahaa, G. M.:
Fractional optimal control problem for differential system with control constraints. Filomat J. 30 (2016), 8, 2177-2189.
MR 3583154
[9] Bahaa, G. M.:
Fractional optimal control problem for differential system with control constraints with delay argument. Advances Difference Equations 2017 (2017), 69, 1-19.
DOI 10.1186/s13662-017-1121-6 |
MR 3615527
[10] Bahaa, G. M.:
Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints. IMA J. Math. Control Inform. 24 (2007), 1-12.
DOI 10.1093/imamci/dnl001 |
MR 2310985
[11] Bahaa, G. M., Hamiaz, A.:
Optimality conditions for fractional differential inclusions with non-singular Mittag-Leffler Kernel. Adv. Difference Equations (2018), 257.
MR 3833842
[13] Bastos, N. R. O., Mozyrska, D., Torres, D. F. M.:
Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform. Int. J. Math. Comput. 11 (2011), J11, 1-9.
MR 2800417
[14] Bastos, N. R. O., Ferreira, R. A. C., Torres, D. F. M.:
Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Cont. Dyn. Syst. 29 (2011), 2, 417-437.
DOI 10.3934/dcds.2011.29.417 |
MR 2728463 |
Zbl 1209.49020
[16] El-Sayed, A. M. A.:
Fractional differential equations. Kyungpook Math. J. 28 (1988), 2, 18-22.
MR 1053036
[18] Fleckinger, J.: Method of sub-super solutions for some elliptic systems defined on $\Omega$. Preprint UMR MIP, Universite Toulouse 3 (1994).
[19] Fleckinger, J., Hernándes, J., Thélin, F. de:
On maximum principle and existence of positive solutions for cooperative elliptic systems. Diff. Int. Eqns. 8 (1995), 69-85.
MR 1296110
[20] Fleckinger, J., Serag, H.:
Semilinear cooperative elliptic systems on $R^{n}$. Rend. di Mat. 15 (1995), VII, 89-108.
MR 1330181
[21] Gastao, S. F. Frederico, Torres, D. F. M.:
Fractional optimal control in the sense of Caputo and the fractional Noether's theorem. Int. Math. Forum 3 (2008), 10, 479-493.
MR 2386201
[22] Kochubei, A. N.:
Fractional order diffusion. Diff. Equations 26 (1990), 485-492.
MR 1061448
[24] Kotarski, W., El-Saify, H. A., Bahaa, G. M.:
Optimal control of parabolic equation with an infinite number of variables for non-standard functional and time delay. IMA J. Math. Control Inform. 19 (2002), 4, 461-476.
DOI 10.1093/imamci/19.4.461 |
MR 1949014
[25] Lions, J. L.:
Optimal Control Of Systems Governed By Partial Differential Equations. Springer-Verlag, Band 170 (1971).
MR 0271512
[27] Liu, Y., Rundell, W., Yamamoto, M.:
Strong maximum principle for fractional diffusion equations and an application to an inverse source problem. Fract. Calc. Appl. Anal. 19 (2016), 4, 888-906.
DOI 10.1515/fca-2016-0048 |
MR 3543685
[28] Liu, Z., Zeng, Sh., Bai, Y.:
Maximum principles for multi-term spacetime variable order fractional diffusion equations and their applications. Fract. Calc. Appl. Anal. 19 (2016), 1, 188-211.
DOI 10.1515/fca-2016-0011 |
MR 3475416
[30] Luchko, Yu.:
Boundary value problems for the generalized time fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12 (2009), 409-422.
MR 2598188
[31] Luchko, Yu.:
Some uniqueness and existence results for the initial boundary value problems for the generalized time fractional diffusion equation. Comput. Math. Appl. 59 (2010), 1766-1772.
DOI 10.1016/j.camwa.2009.08.015 |
MR 2595950
[32] Luchko, Yu.:
Initial boundary value problems for the generalized multiterm time fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538-548.
DOI 10.1016/j.jmaa.2010.08.048 |
MR 2729240
[33] Luchko, Yu., Yamamoto, M.:
General time fractional diffusion equation: Some uniqueness and existence results for the initial boundary value problems. Fract. Calc. Appl. Anal. 19 (2016), 3, 676-695.
DOI 10.1515/fca-2016-0036 |
MR 3563605
[39] Ye, H., Liu, F., Anh, V., Turner, I.:
Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations. Appl. Math. Comput. 227 (2014), 531-540.
DOI 10.1016/j.amc.2013.11.015 |
MR 3146339