Previous |  Up |  Next

Article

Keywords:
coercivity; stability of coercivity; Lojasiewicz exponent at infinity
Summary:
In this article we analyze the relationship between the growth and stability properties of coercive polynomials. For coercive polynomials we introduce the degree of stable coercivity which measures how stable the coercivity is with respect to small perturbations by other polynomials. We link the degree of stable coercivity to the Łojasiewicz exponent at infinity and we show an explicit relation between them.
References:
[1] Bajbar, T., Stein, O.: Coercive polynomials and their Newton polytopes. SIAM J. Optim. 25 (2015), 1542-1570. DOI 10.1137/140980624 | MR 3376789
[2] Bajbar, T., Stein, O.: Coercive polynomials: stability, order of growth, and Newton polytopes. Optimization 68 (2018), 1, 99..124. DOI 10.1080/02331934.2018.1426585 | MR 3902159
[3] Bajbar, T., Stein, O.: On globally diffeomorphic polynomial maps via Newton polytopes and circuit numbers. Math. Zeitschrift 288 (2018), 915-933. DOI 10.1007/s00209-017-1920-1 | MR 3778984
[4] Behrends, S.: Geometric and Algebraic Approaches to Mixed-Integer Polynomial Optimization Using Sos Programming. PhD Thesis, Universität Göttingen 2017.
[5] Behrends, S., Hübner, R., Schöbel, A.: Norm bounds and underestimators for unconstrained polynomial integer minimization. Math. Methods Oper. Res. 87 (2018), 73-107. DOI 10.1007/s00186-017-0608-y | MR 3749410
[6] Bivià-Ausina, C.: Injectivity of real polynomial maps and Łojasiewicz exponents at infinity. Math. Zeitschrift 257 (2007), 745-767. DOI 10.1007/s00209-007-0129-0 | MR 2342551
[7] Chadzyński, J., Krasiński, T.: A set on which the Łojasiewicz exponent at infinity is attained. Ann. Polon. Math. 67 (1997), 2, 191-19. DOI 10.4064/ap-67-2-191-197 | MR 1460600
[8] Chen, Y., Dias, L. R. G., Takeuchi, K., Tibar, M.: Invertible polynomial mappings via Newton non-degeneracy. Ann. Inst. Fourier 64 (2014), 1807-1822. DOI 10.5802/aif.2897 | MR 3330924
[9] Din, M. S. El: Computing the global optimum of a multivariate polynomial over the reals. In: Proc. Twenty-first international symposium on Symbolic and algebraic computation 2008, pp. 71-78. DOI 10.1145/1390768.1390781 | MR 2500375
[10] Gorin, E. A.: Asymptotic properties of polynomials and algebraic functions of several variables. Russian Math. Surveys 16 (1961), 93-119. DOI 10.1070/rm1961v016n01abeh004100 | MR 0131418
[11] Greuet, A., Din, M. Safey El: Deciding reachability of the infimum of a multivariate polynomial. In: Proc. 36th international symposium on Symbolic and algebraic computation 2011, pp. 131-138. DOI 10.1145/1993886.1993910 | MR 2895204
[12] Greuet, A., Din, M. Safey El: Probabilistic algorithm for polynomial optimization over a real algebraic set. SIAM J. Optim. 24 (2014), 1313-1343. DOI 10.1137/130931308 | MR 3248043
[13] Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32 (2007), 189-203. MR 2368007
[14] Marshall, M.: Optimization of polynomial functions. Canadian Math. Bull. 46 (2003), 575-587. DOI 10.4153/cmb-2003-054-7 | MR 2011395
[15] Marshall, M.: Positive polynomials and sums of squares. Amer. Math. Soc. (2008), 3-19. MR 2383959
[16] Némethi, A., Zaharia, A.: Milnor fibration at infinity. Indagationes Math. 3 (1992), 323-335. DOI 10.1016/0019-3577(92)90039-n | MR 1186741
[17] Nie, J., Demmel, J., Sturmfels, B.: Minimizing polynomials via sum of squares over the gradient ideal. Math. Programm. 106 (2006), 587-606. DOI 10.1007/s10107-005-0672-6 | MR 2216797
[18] Schweighofer, M.: Global optimization of polynomials using gradient tentacles and sums of squares. SIAM J. Optim. 17 (2006), 920-942. DOI 10.1137/050647098 | MR 2257216
[19] Vui, H. H., Pham, T. S.: Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), 71-82. MR 2348981
[20] Vui, H. H., Pham, T. S.: Representations of positive polynomials and optimization on noncompact semialgebraic sets. SIAM J. Optim. 20 (2010), 3082-3103. DOI 10.1137/090772903 | MR 2735945
Partner of
EuDML logo