Previous |  Up |  Next

Article

Title: A higher order pressure segregation scheme for the time-dependent magnetohydrodynamics equations (English)
Author: Yang, Yun-Bo
Author: Jiang, Yao-Lin
Author: Kong, Qiong-Xiang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 5
Year: 2019
Pages: 531-556
Summary lang: English
.
Category: math
.
Summary: A higher order pressure segregation scheme for the time-dependent incompressible magnetohydrodynamics (MHD) equations is presented. This scheme allows us to decouple the MHD system into two sub-problems at each time step. First, a coupled linear elliptic system is solved for the velocity and the magnetic field. And then, a Poisson-Neumann problem is treated for the pressure. The stability is analyzed and the error analysis is accomplished by interpreting this segregated scheme as a higher order time discretization of a perturbed system which approximates the MHD system. The main results are that the convergence for the velocity and the magnetic field are strongly second-order in time while that for the pressure is strongly first-order in time. Some numerical tests are performed to illustrate the theoretical predictions and demonstrate the efficiency of the proposed scheme.\looseness -1 (English)
Keyword: magnetohydrodynamics equations
Keyword: pressure segregation method
Keyword: higher order scheme
Keyword: stability
Keyword: error estimate
MSC: 65N12
MSC: 65N15
MSC: 65N30
idZBL: 07144727
idMR: MR4022162
DOI: 10.21136/AM.2019.0069-17
.
Date available: 2019-10-16T10:59:15Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147849
.
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140, Academic press, New York (2003). Zbl 1098.46001, MR 2424078, 10.1016/S0079-8169(03)80012-0
Reference: [2] An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations.Appl. Numer. Math. 112 (2017), 167-181. Zbl 06657058, MR 3574248, 10.1016/j.apnum.2016.10.010
Reference: [3] Armero, F., Simo, J. C.: Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations.Comput. Methods Appl. Mech. Eng. 131 (1996), 41-90. Zbl 0888.76042, MR 1393572, 10.1016/0045-7825(95)00931-0
Reference: [4] Badia, S., Codina, R., Planas, R.: On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics.J. Comput. Phys. 234 (2013), 399-416. Zbl 1284.76248, MR 2999784, 10.1016/j.jcp.2012.09.031
Reference: [5] Badia, S., Planas, R., Gutiérrez-Santacreu, J. V.: Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections.Int. J. Numer. Methods Eng. 93 (2013), 302-328. Zbl 1352.76122, MR 3008267, 10.1002/nme.4392
Reference: [6] Blasco, J., Codina, R.: Error estimates for an operator-splitting method for incompressible flows.Appl. Numer. Math. 51 (2004), 1-17. Zbl 1126.76339, MR 2083322, 10.1016/j.apnum.2004.02.004
Reference: [7] Blasco, J., Codina, R., Huerta, A.: A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm.Int. J. Numer. Methods Fluids 28 (1998), 1391-1419. Zbl 0935.76041, MR 1663560, 10.1002/(SICI)1097-0363(19981230)28:10<1391::AID-FLD699>3.0.CO;2-5
Reference: [8] Choi, H., Shen, J.: Efficient splitting schemes for magneto-hydrodynamic equations.Sci. China, Math. 59 (2016), 1495-1510. Zbl 1388.76224, MR 3528499, 10.1007/s11425-016-0280-5
Reference: [9] Chorin, A. J.: Numerical solution of the Navier-Stokes equations.Math. Comput. 22 (1968), 745-762. Zbl 0198.50103, MR 0242392, 10.2307/2004575
Reference: [10] Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations.Numer. Math. 87 (2000), 83-111. Zbl 0988.76050, MR 1800155, 10.1007/s002110000193
Reference: [11] Gerbeau, J.-F., Bris, C. Le, Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2006). Zbl 1107.76001, MR 2289481, 10.1093/acprof:oso/9780198566656.001.0001
Reference: [12] Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms.Springer Series in Computational Mathematics 5, Springer, Berlin (1986). Zbl 0585.65077, MR 0851383, 10.1007/978-3-642-61623-5
Reference: [13] Greif, C., Li, D., Schötzau, D., Wei, X.: A mixed finite element method with exactly \hbox{divergence-free} velocities for incompressible magnetohydrodynamics.Comput. Methods Appl. Mech. Eng. 199 (2010), 2840-2855. Zbl 1231.76146, MR 2740762, 10.1016/j.cma.2010.05.007
Reference: [14] Guermond, J. L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows.Comput. Methods Appl. Mech. Eng. 195 (2006), 6011-6045. Zbl 1122.76072, MR 2250931, 10.1016/j.cma.2005.10.010
Reference: [15] Guermond, J. L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows.J. Comput. Phys. 192 (2003), 262-276. Zbl 1032.76529, MR 2045709, 10.1016/j.jcp.2003.07.009
Reference: [16] Guermond, J. L., Shen, J.: Velocity-correction projection methods for incompressible flows.SIAM J. Numer. Anal. 41 (2003), 112-134. Zbl 1130.76395, MR 1974494, 10.1137/S0036142901395400
Reference: [17] Guermond, J. L., Shen, J.: On the error estimates for the rotational pressure-correction projection methods.Math. Comput. 73 (2004), 1719-1737. Zbl 1093.76050, MR 2059733, 10.1090/S0025-5718-03-01621-1
Reference: [18] Gunzburger, M. D., Meir, A. J., Peterson, J. S.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics.Math. Comput. 56 (1991), 523-563. Zbl 0731.76094, MR 1066834, 10.2307/2008394
Reference: [19] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [20] Jiang, Y.-L., Yang, Y.-B.: Semi-discrete Galerkin finite element method for the diffusive Peterlin viscoelastic model.Comput. Methods Appl. Math. 18 (2018), 275-296. Zbl 1391.76337, MR 3776046, 10.1515/cmam-2017-0021
Reference: [21] Layton, W., Tran, H., Trenchea, C.: Numerical analysis of two partitioned methods for uncoupling evolutionary MHD flows.Numer. Methods Partial Differ. Equations 30 (2014), 1083-1102. Zbl 1364.76088, MR 3200267, 10.1002/num.21857
Reference: [22] Linke, A., Neilan, M., Rebholz, L. G., Wilson, N. E.: A connection between coupled and penalty projection timestepping schemes with FE spatial discretization for the Navier-Stokes equations.J. Numer. Math. 25 (2017), 229-248. Zbl 06857557, MR 3767412, 10.1515/jnma-2016-1024
Reference: [23] Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system.ESAIM, Math. Model. Numer. Anal. 42 (2008), 1065-1087. Zbl 1149.76029, MR 2473320, 10.1051/m2an:2008034
Reference: [24] Qian, Y., Zhang, T.: The second order projection method in time for the time-dependent natural convection problem.Appl. Math., Praha 61 (2016), 299-315. Zbl 06587854, MR 3502113, 10.1007/s10492-016-0133-y
Reference: [25] Ravindran, S. S.: An extrapolated second order backward difference time-stepping scheme for the magnetohydrodynamics system.Numer. Funct. Anal. Optim. 37 (2016), 990-1020. Zbl 1348.76189, MR 3532388, 10.1080/01630563.2016.1181651
Reference: [26] Schmidt, P. G.: A Galerkin method for time-dependent MHD flow with nonideal boundaries.Commun. Appl. Anal. 3 (1999), 383-398. Zbl 0931.76099, MR 1696344
Reference: [27] Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics.Numer. Math. 96 (2004), 771-800. Zbl 1098.76043, MR 2036365, 10.1007/s00211-003-0487-4
Reference: [28] Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations.Commun. Pure Appl. Math. 36 (1983), 635-664. Zbl 0524.76099, MR 0716200, 10.1002/cpa.3160360506
Reference: [29] Shen, J.: On error estimates of projection methods for Navier-Stokes equations: First-order schemes.SIAM J. Numer. Anal. 29 (1992), 57-77. Zbl 0741.76051, MR 1149084, 10.1137/0729004
Reference: [30] Shen, J.: On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes.Math. Comput. 65 (1996), 1039-1065. Zbl 0855.76049, MR 1348047, 10.1090/S0025-5718-96-00750-8
Reference: [31] Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows.Discrete Contin. Dyn. Syst., Ser. B. 8 (2007), 663-676. Zbl 1220.76046, MR 2328729, 10.3934/dcdsb.2007.8.663
Reference: [32] Simo, J. C., Armero, F.: Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations.Comput. Methods Appl. Mech. Eng. 111 (1994), 111-154. Zbl 0846.76075, MR 1259618, 10.1016/0045-7825(94)90042-6
Reference: [33] Temam, R.: Une méthode d'approximation de la solution des équations de Navier-Stokes.Bull. Soc. Math. Fr. 96 (1968), 115-152 French. Zbl 0181.18903, MR 0237972, 10.24033/bsmf.1662
Reference: [34] Trenchea, C.: Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows.Appl. Math. Lett. 27 (2014), 97-100. Zbl 1311.76096, MR 3111615, 10.1016/j.aml.2013.06.017
Reference: [35] Yang, Y.-B., Jiang, Y.-L.: Numerical analysis and computation of a type of IMEX method for the time-dependent natural convection problem.Comput. Methods Appl. Math. 16 (2016), 321-344. Zbl 1336.65155, MR 3483620, 10.1515/cmam-2016-0006
Reference: [36] Yang, Y.-B., Jiang, Y.-L.: Analysis of two decoupled time-stepping finite element methods for incompressible fluids with microstructure.Int. J. Comput. Math. 95 (2018), 686-709. Zbl 1387.65108, MR 3760370, 10.1080/00207160.2017.1294688
Reference: [37] Yang, Y.-B., Jiang, Y.-L.: An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection.Numer. Algorithms 78 (2018), 569-597. Zbl 1402.65139, MR 3803360, 10.1007/s11075-017-0389-7
Reference: [38] Yuksel, G., Ingram, R.: Numerical analysis of a finite element, Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers.Int. J. Numer. Anal. Model 10 (2013), 74-98. Zbl 1266.76066, MR 3011862
Reference: [39] Yuksel, G., Isik, O. R.: Numerical analysis of Backward-Euler discretization for simplified magnetohydrodynamic flows.Appl. Math. Modelling 39 (2015), 1889-1898 \99999DOI99999 10.1016/j.apm.2014.10.007 \goodbreak. MR 3325585, 10.1016/j.apm.2014.10.007
.

Files

Files Size Format View
AplMat_64-2019-5_3.pdf 3.052Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo