Previous |  Up |  Next

Article

Title: Theorems on some families of fractional differential equations and their applications (English)
Author: Bozkurt, Gülçin
Author: Albayrak, Durmuş
Author: Dernek, Neşe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 5
Year: 2019
Pages: 557-579
Summary lang: English
.
Category: math
.
Summary: We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for the vibration equation with fractional damping and the Bagley-Torvik equation. (English)
Keyword: fractional calculus
Keyword: fractional differential equation
Keyword: Caputo derivative
Keyword: Laplace transform
MSC: 26A33
MSC: 34A08
MSC: 44A10
MSC: 44A15
idZBL: 07144728
idMR: MR4022163
DOI: 10.21136/AM.2019.0031-19
.
Date available: 2019-10-16T11:00:06Z
Last updated: 2021-11-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147850
.
Reference: [1] Albadarneh, R. B., Batiha, I. M., Zurigat, M.: Numerical solutions for linear fractional differential equations of order $1<\alpha<2$ using finite difference method (ffdm).J. Math. Comput. Sci. 16 (2016), 102-111. 10.22436/jmcs.016.01.11
Reference: [2] Bansal, M., Jain, R.: Analytical solution of Bagley Torvik equation by generalize differential transform.Int. J. Pure Appl. Math. 110 (2016), 265-273. 10.12732/ijpam.v110i2.3
Reference: [3] Chung, W. S., Jung, M.: Fractional damped oscillators and fractional forced oscillators.J. Korean Phys. Soc. 64 (2014), 186-191. 10.3938/jkps.64.186
Reference: [4] Debnath, L.: Recent applications of fractional calculus to science and engineering.Int. J. Math. Math. Sci. 2003 (2003), 3413-3442. Zbl 1036.26004, MR 2025566, 10.1155/s0161171203301486
Reference: [5] Debnath, L., Bhatta, D.: Integral Transforms and Their Applications.Chapman & Hall/CRC, Boca Raton (2007). Zbl 1113.44001, MR 2253985
Reference: [6] Diethelm, K., Ford, N. J.: Numerical solution of the Bagley-Torvik equation.BIT 42 (2002), 490-507. Zbl 1035.65067, MR 1931882, 10.1023/A:1021973025166
Reference: [7] Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Tables of Integral Transforms. Vol. I.Bateman Manuscript Project. California Institute of Technology, McGraw-Hill, New York (1954). Zbl 0055.36401, MR 0061695
Reference: [8] Hu, S., Chen, W., Gou, X.: Modal analysis of fractional derivative damping model of frequency-dependent viscoelastic soft matter.Advances in Vibration Engineering 10 (2011), 187-196.
Reference: [9] Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform.Int. J. Nonlinear Sci. 16 (2013), 3-11. Zbl 1394.34015, MR 3100782
Reference: [10] Kumar, H., Pathan, M. A.: On the distribution of non-zero zeros of generalized Mittag-Leffler functions.J. Eng. Res. Appl. 1 (2016), 66-71.
Reference: [11] Li, C., Qian, D., Chen, Y.: On Riemann-Liouville and Caputo derivatives.Discrete Dyn. Nat. Soc. 2011 (2011), Article ID 562494, 15 pages. Zbl 1213.26008, MR 2782260, 10.1155/2011/562494
Reference: [12] Lin, S.-D., Lu, C.-H.: Laplace transform for solving some families of fractional differential equations and its applications.Adv. Difference Equ. 2013 (2013), Article ID 137, 9 pages. Zbl 1390.34025, MR 3068648, 10.1186/1687-1847-2013-137
Reference: [13] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954
Reference: [14] Nolte, B., Kempfle, S., Schäfer, I.: Does a real material behave fractionally? Applications of fractional differential operators to the damped structure borne sound in viscoelastic solids.J. Comput. Acoust. 11 (2003), 451-489. Zbl 1360.74035, MR 2013238, 10.1142/s0218396x03002024
Reference: [15] Pálfalvi, A.: Efficient solution of a vibration equation involving fractional derivatives.Int. J. Non-Linear Mech. 45 (2010), 169-175. 10.1016/j.ijnonlinmec.2009.10.006
Reference: [16] Prabhakar, T. R.: A singular integral equation with a generalized Mittag Leffler function in the kernel.Yokohama Math. J. 19 (1971), 7-15. Zbl 0221.45003, MR 0293349
Reference: [17] Raja, M. A. Z., Khan, J. A., Qureshi, I. M.: Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence.Math. Probl. Eng. 2011 (2011), Article ID 675075, 18 pages. Zbl 1382.34010, MR 2781559, 10.1155/2011/675075
.

Files

Files Size Format View
AplMat_64-2019-5_4.pdf 324.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo