Previous |  Up |  Next

Article

Title: Some algebraic and homological properties of Lipschitz algebras and their second duals (English)
Author: Abtahi, F.
Author: Byabani, E.
Author: Rejali, A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 211-224
Summary lang: English
.
Category: math
.
Summary: Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided. (English)
Keyword: amenability
Keyword: Arens regularity
Keyword: biprojectivity
Keyword: biflatness
Keyword: Lipschitz algebra
Keyword: metric space
MSC: 11J83
MSC: 46H05
MSC: 46J10
idZBL: Zbl 07144736
idMR: MR40383556
DOI: 10.5817/AM2019-4-211
.
Date available: 2019-10-30T08:51:18Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147874
.
Reference: [1] Abtahi, F., Azizi, M., Rejali, A.: Character amenability of some intersections of Lipschitz algebras.Canad. Math. Bull. 60 (4) (2017), 673–689. MR 3710653, 10.4153/CMB-2017-039-8
Reference: [2] Alaghmandan, M., Nasr Isfahani, R., Nemati, M.: On $\phi -$contractibility of the Lebesgue-Fourier algebra of a locally compact group.Arch. Math. (Basel) 95 (2010), 373–379. MR 2727314, 10.1007/s00013-010-0177-2
Reference: [3] Bade, W.G., Curtis, Jr., P.C., Dales, H.G.: Amenability and weak amenability for Beurling and Lipschitz algebras.Proc. London Math. Soc. 55 (2) (1987), 359–377. Zbl 0634.46042, MR 0896225
Reference: [4] Dales, H.G.: Banach algebras and automatic continuity.London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. Zbl 0981.46043, MR 1816726
Reference: [5] Dashti, M., Nasr Isfahani, R., Soltani Renani, S.: Character amenability of Lipschitz algebras.Canad. Math. Bull. 57 (1) (2014), 37–41. MR 3150714, 10.4153/CMB-2012-015-3
Reference: [6] Ghahramani, F., Zhang, Y.: Pseudo-amenable and pseudo-contractible Banach algebras.Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. MR 2296395, 10.1017/S0305004106009649
Reference: [7] Gourdeau, F.: Amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. MR 0974991, 10.1017/S0305004100067840
Reference: [8] Helemskii, A.Ya.: The homology of Banach and topological algebras.Kluwer Academic Publishers Group, Dordrecht, 1989. MR 1093462
Reference: [9] Hu, Z., Monfared, M.S., Traynor, T.: On character amenable Banach algebras.Studia Math. 193 (1) (2009), 53–78. MR 2506414, 10.4064/sm193-1-3
Reference: [10] Johnson, B.E.: Cohomology in Banach algebras.Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. Zbl 0256.18014, MR 0374934
Reference: [11] Johnson, J.A.: Banach spaces of Lipschitz functions and vector-valued Lipschitz functions.Trans. Amer. Math. Soc. 148 (1970), 147–169. MR 0415289, 10.1090/S0002-9947-1970-0415289-8
Reference: [12] Kaniuth, E.: A course in commutative Banach algebras.Graduate Texts in Mathematics, Springer, New York, 2009. MR 2458901
Reference: [13] Kaniuth, E., Lau, A.T., Pym, J.: On $\varphi -$amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. MR 2388235, 10.1017/S0305004107000874
Reference: [14] Loomis, L.H.: An introduction to abstract harmonic analysi.D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. MR 0054173
Reference: [15] Monfared, M.S.: Character amenability of Banach algebras.Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. MR 2418712, 10.1017/S0305004108001126
Reference: [16] Runde, V.: Lectures on amenability.Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. Zbl 0999.46022, MR 1874893
Reference: [17] Samei, E., Spronk, N., Stokke, R.: Biflatness and pseudo-amenability of Segal algebras.Canad. J. Math. 62 4) (2010), 845–869. MR 2674704, 10.4153/CJM-2010-044-4
Reference: [18] Sherbert, D.R.: Banach algebras of Lipschitz functions.Pacific J. Math. 13 (1963), 1387–1399. Zbl 0121.10203, MR 0156214, 10.2140/pjm.1963.13.1387
Reference: [19] Sherbert, D.R.: The structure of ideals and point derivations in Banach algebras of Lipschitz functions.Trans. Amer. Math. Soc. 111 (1964), 240–272. Zbl 0121.10204, MR 0161177, 10.1090/S0002-9947-1964-0161177-1
Reference: [20] Zhang, Y.: Weak amenability of a class of Banach algebras.Canad. Math. Bull. 44 (4) (2001), 504–508. Zbl 1156.46306, MR 1863642, 10.4153/CMB-2001-050-7
.

Files

Files Size Format View
ArchMathRetro_055-2019-4_2.pdf 534.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo