Previous |  Up |  Next

Article

Title: Breaking points in the poset of conjugacy classes of subgroups of a finite group (English)
Author: Tărnăuceanu, Marius
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 69
Issue: 4
Year: 2019
Pages: 1081-1087
Summary lang: English
.
Category: math
.
Summary: We determine the finite groups whose poset of conjugacy classes of subgroups has breaking points. This leads to a new characterization of the generalized quaternion $2$-groups. A generalization of this property is also studied. (English)
Keyword: breaking point
Keyword: poset of conjugacy classes of subgroups
Keyword: interval
Keyword: generalized quaternion $2$-group
MSC: 20D15
MSC: 20D30
MSC: 20E15
idZBL: 07144877
idMR: MR4039622
DOI: 10.21136/CMJ.2019.0066-18
.
Date available: 2019-11-28T08:51:55Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147916
.
Reference: [1] Breaz, S., Călugăreanu, G.: Abelian groups whose subgroup lattice is the union of two intervals.J. Aust. Math. Soc. 78 (2005), 27-36. Zbl 1080.20023, MR 2129487, 10.1017/s1446788700015548
Reference: [2] Călugăreanu, G., Deaconescu, M.: Breaking points in subgroup lattices.Proc. Conf. Groups St. Andrews 2001 in Oxford. Vol. I C. M. Campbell et al. London Mathematical Society Lecture Note Series 304, Cambridge University Press, Cambridge (2003), 59-62. Zbl 1062.20028, MR 2051518, 10.1017/CBO9780511542770.012
Reference: [3] Chen, Y., Chen, G.: A note on a characterization of generalized quaternion 2-groups.C. R., Math., Acad. Sci. Paris 352 (2014), 459-461. Zbl 1303.20019, MR 3210124, 10.1016/j.crma.2014.04.009
Reference: [4] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92, American Mathematical Society, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092
Reference: [5] Schmidt, R.: Subgroup Lattices of Groups.De Gruyter Expositions in Mathematics 14, Walter de Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462, 10.1515/9783110868647
Reference: [6] Suzuki, M.: On the lattice of subgroups of finite groups.Trans. Am. Math. Soc. 70 (1951), 345-371. Zbl 0043.02502, MR 0039717, 10.1090/S0002-9947-1951-0039717-3
Reference: [7] Suzuki, M.: Group Theory I.Grundlehren der Mathematischen Wissenschaften 247, Springer, Berlin (1982). Zbl 0472.20001, MR 0648772, 10.1007/978-3-642-61804-8
Reference: [8] Suzuki, M.: Group Theory II.Grundlehren der Mathematischen Wissenschaften 248, Springer, Berlin (1986). Zbl 0472.20001, MR 0501682, 10.1007/978-3-642-86885-6_3
Reference: [9] Tărnăuceanu, M.: A characterization of generalized quaternion 2-groups.C. R., Math., Acad. Sci. Paris 348 (2010), 731-733. Zbl 1205.20024, MR 2671150, 10.1016/j.crma.2010.06.016
Reference: [10] Tărnăuceanu, M.: Contributions to the Study of Subgroup Lattices.Matrix Rom, Bucharest (2016). Zbl 1360.20002, MR 3496569
.

Files

Files Size Format View
CzechMathJ_69-2019-4_15.pdf 243.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo