Title:
|
On a sequence formed by iterating a divisor operator (English) |
Author:
|
Djamel, Bellaouar |
Author:
|
Abdelmadjid, Boudaoud |
Author:
|
Özer, Özen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
69 |
Issue:
|
4 |
Year:
|
2019 |
Pages:
|
1177-1196 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathbb {N}$ be the set of positive integers and let $s\in \mathbb {N}$. We denote by $d^{s}$ the arithmetic function given by $ d^{s}( n) =( d( n) ) ^{s}$, where $d(n)$ is the number of positive divisors of $n$. Moreover, for every $\ell ,m\in \mathbb {N}$ we denote by $\delta ^{s,\ell ,m}( n) $ the sequence $$ \underbrace {d^{s}( d^{s}( \ldots d^{s}( d^{s}( n) +\ell ) +\ell \ldots ) +\ell ) }_{m\text {-times}} =\begin {cases} d^{s}( n) & \text {for} \ m=1,\\ d^{s}( d^{s}( n) +\ell ) &\text {for} \ m=2,\\ d^{s}(d^{s}( d^{s}(n) +\ell ) +\ell ) & \text {for} \ m=3, \\ \vdots & \end {cases} $$ We present classical and nonclassical notes on the sequence $ ( \delta ^{s,\ell ,m}( n)) _{m\geq 1}$, where $\ell $, $n$, $s$ are understood as parameters. (English) |
Keyword:
|
divisor function |
Keyword:
|
prime number |
Keyword:
|
iterated sequence |
Keyword:
|
internal set theory |
MSC:
|
03H05 |
MSC:
|
11A25 |
MSC:
|
11A41 |
idZBL:
|
07144884 |
idMR:
|
MR4039629 |
DOI:
|
10.21136/CMJ.2019.0133-18 |
. |
Date available:
|
2019-11-28T08:55:06Z |
Last updated:
|
2022-01-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147923 |
. |
Reference:
|
[1] Bellaouar, D.: Notes on certain arithmetic inequalities involving two consecutive primes.Malays. J. Math. Sci. 10 (2016), 253-268. MR 3583217 |
Reference:
|
[2] Bellaouar, D., Boudaoud, A.: Non-classical study on the simultaneous rational approximation.Malays. J. Math. Sci. 9 (2015), 209-225. MR 3350181 |
Reference:
|
[3] Boudaoud, A.: La conjecture de Dickson et classes particulière d'entiers.Ann. Math. Blaise Pascal 13 (2006), 103-109 French. Zbl 1172.11307, MR 2233013, /10.5802/ambp.215 |
Reference:
|
[4] Boudaoud, A.: Decomposition of terms in Lucas sequences.J. Log. Anal. 1 (2009), Article 4, 23 pages. Zbl 1177.11015, MR 2501375, 10.4115/jla.2009.1.4 |
Reference:
|
[5] Koninck, J.-M. De, Mercier, A.: 1001 problems in classical number theory.Ellipses, Paris (2004), French. Zbl 1109.11001, MR 2302879 |
Reference:
|
[6] Diener, F., (eds.), M. Diener: Nonstandard Analysis in Practice.Universitext, Springer, Berlin (1995). Zbl 0848.26015, MR 1396794, 10.1007/978-3-642-57758-1 |
Reference:
|
[7] Diener, F., Reeb, G.: Analyse Non Standard.Enseignement des Sciences 40, Hermann, Paris (1989), French. Zbl 0682.26010, MR 1026099 |
Reference:
|
[8] Erdős, P., Kátai, I.: On the growth of $ d_{k}( n) $.Fibonacci Q. 7 (1969), 267-274. Zbl 0188.34102, MR 0252338 |
Reference:
|
[9] Jin, R.: Inverse problem for upper asymptotic density.Trans. Am. Math. Soc. 355 (2003), 57-78. Zbl 1077.11007, MR 1928077, 10.1090/s0002-9947-02-03122-7 |
Reference:
|
[10] Kanovei, V., Reeken, M.: Nonstandard Analysis, Axiomatically.Springer Monographs in Mathematics, Springer, Berlin (2004). Zbl 1058.03002, MR 2093998, 10.1007/978-3-662-08998-9 |
Reference:
|
[11] Nathanson, M. B.: Elementary Methods in Number Theory.Graduate Texts in Mathematics 195, Springer, New York (2000). Zbl 0953.11002, MR 1732941, 10.1007/b98870 |
Reference:
|
[12] Nelson, E.: Internal set theory: A new approach to nonstandard analysis.Bull. Am. Math. Soc. 83 (1977), 1165-1198. Zbl 0373.02040, MR 0469763, 10.1090/s0002-9904-1977-14398-x |
Reference:
|
[13] Ramanujan, S.: Highly composite numbers.Lond. M. S. Proc. (2) 14 (1915), 347-409 \99999JFM99999 45.1248.01. MR 2280858, 10.1112/plms/s2_14.1.347 |
Reference:
|
[14] Robinson, A.: Non-standard Analysis.Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1974). Zbl 0843.26012, MR 1373196 |
Reference:
|
[15] Berg, I. P. Van den: Extended use of IST.Ann. Pure Appl. Logic 58 (1992), 73-92. Zbl 0777.03019, MR 1169787, 10.1016/0168-0072(92)90035-x |
Reference:
|
[16] Berg, I. P. Van den, (eds.), V. Neves: The Strength of Nonstandard Analysis.Springer, Wien (2007). Zbl 1117.03074, MR 2348897, 10.1007/978-3-211-49905-4 |
Reference:
|
[17] Wells, D.: Prime Numbers: The Most Mysterious Figures in Math.Wiley, Hoboken (2005). |
Reference:
|
[18] Yan, S. Y.: Number Theory for Computing.Springer, Berlin (2002). Zbl 1010.11001, MR 2056446, 10.1007/978-3-662-04773-6 |
. |