Previous |  Up |  Next

Article

Title: Theoretical and numerical studies of the $P_NP_M$ DG schemes in one space dimension (English)
Author: Badenjki, Abdulatif
Author: Warnecke, Gerald
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 6
Year: 2019
Pages: 599-635
Summary lang: English
.
Category: math
.
Summary: We give a proof of the existence of a solution of reconstruction operators used in the $P_NP_M$ DG schemes in one space dimension. Some properties and error estimates of the projection and reconstruction operators are presented. Then, by applying the $P_NP_M$ DG schemes to the linear advection equation, we study their stability obtaining maximal limits of the Courant numbers for several $P_NP_M$ DG schemes mostly experimentally. A numerical study explains how the stencils used in the reconstruction affect the efficiency of the schemes. (English)
Keyword: $P_NP_M$ DG scheme
Keyword: piecewise polynomial
Keyword: projection
Keyword: reconstruction
Keyword: least square
Keyword: local continuous space time Galerkin method
Keyword: discontinuous Galerkin
Keyword: advection equation
Keyword: conservation law
Keyword: von Neumann stability analysis
Keyword: time discretization
MSC: 33C45
MSC: 65M12
MSC: 65M60
idZBL: 07144730
idMR: MR4042430
DOI: 10.21136/AM.2019.0226-18
.
Date available: 2019-12-09T11:46:33Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147924
.
Reference: [1] Adams, R. A.: Sobolev Spaces.Pure and Applied Mathematics 65, Academic Press, New York (1975). Zbl 0314.46030, MR 0450957, 10.1016/S0079-8169(08)61377-X
Reference: [2] Badenjki, A.: The $P_NP_M$ DG Schemes for the One Dimensional Hyperbolic Conservation Laws.Doctoral Thesis, Otto-von-Guericke University, Magdeburg (2018).
Reference: [3] Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems.Advanced Numerical Approximation of Nonlinear Hyperbolic Equations A. Quarteroni et al. Lecture Notes in Mathematics 1697, Springer, Berlin (1998), 151-268. Zbl 0927.65120, MR 1728854, 10.1007/BFb0096353
Reference: [4] Cockburn, B., Shu, C.-W.: TVB Runge Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: General framework.Math. Comput. 52 (1989), 411-435. Zbl 0662.65083, MR 0983311, 10.2307/2008474
Reference: [5] Dumbser, M., Balsara, D. S., Toro, E. F., Munz, C.-D.: A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes.J. Comput. Phys. 227 (2008), 8209-8253. Zbl 1147.65075, MR 2446488, 10.1016/j.jcp.2008.05.025
Reference: [6] Evans, L. C.: Partial Differential Equations.Graduate Studies in Mathematics 19, American Mathematical Society, Providence (1998). Zbl 1194.35001, MR 1625845, 10.1090/gsm/019
Reference: [7] Goetz, C. R., Dumbser, M.: A square entropy stable flux limiter for $P_NP_M$ schemes.Available at https://arxiv.org/abs/1612.04793 (2016), 24 pages.
Reference: [8] Hirsch, C.: Numerical Computation of Internal and External Flows. Volume 1: Fundamentals of Numerical Discretization.Wiley Series in Numerical Methods in Engineering; Wiley, Chichester (1988). Zbl 0662.76001
Reference: [9] Koornwinder, T. H., Wong, R., Koekoek, R., Swarttouw, R. F.: Orthogonal polynomials.NIST Handbook of Mathematical Functions F. W. J. Olver et al. Cambridge University Press, Cambridge (2010), 435-484. Zbl 1198.00002, MR 2655358
Reference: [10] Stegun, I. A.: Legendre functions.Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables M. Abramowitz, I. A. Stegun National Bureau of Standards Applied Mathematics Series 55, Government Printing Office, Washington (1970). Zbl 0171.38503, MR 0167642
Reference: [11] Strang, G.: Introduction to Linear Algebra.Wellesley-Cambridge Press, Wellesley (2003). Zbl 1046.15001, MR 3058665
.

Files

Files Size Format View
AplMat_64-2019-6_1.pdf 495.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo