Previous |  Up |  Next


Title: Fractional-order Bessel functions with various applications (English)
Author: Dehestani, Haniye
Author: Ordokhani, Yadollah
Author: Razzaghi, Mohsen
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 6
Year: 2019
Pages: 637-662
Summary lang: English
Category: math
Summary: We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between the computed approximations and the exact solution and apply it in some examples. Applications are given to three model problems to demonstrate the effectiveness of the proposed method. (English)
Keyword: fractional-order Bessel functions
Keyword: fractional operational matrix
Keyword: error estimation
MSC: 34A08
MSC: 65L70
MSC: 65M70
idZBL: 07144731
idMR: MR4042431
DOI: 10.21136/AM.2019.0279-18
Date available: 2019-12-09T11:47:32Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Agarwal, R., O'Regan, D., Hristova, S.: Stability of Caputo fractional differential equations by Lyapunov functions.Appl. Math., Praha 60 (2015), 653-676. Zbl 1374.34005, MR 3436567, 10.1007/s10492-015-0116-4
Reference: [2] Baillie, R. T.: Long memory processes and fractional integration in econometrics.J. Econom. 73 (1996), 5-59. Zbl 0854.62099, MR 1410000, 10.1016/0304-4076(95)01732-1
Reference: [3] Bhrawy, A. H., Alhamed, Y., Baleanu, D., Al-Zahrani, A.: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions.Fract. Calc. Appl. Anal. 17 (2014), 1138-1157. Zbl 1312.65166, MR 3254684, 10.2478/s13540-014-0218-9
Reference: [4] Bohannan, G. W.: Analog fractional order controller in temperature and motor control applications.J. Vib. Control 14 (2008), 1487-1498. MR 2463074, 10.1177/1077546307087435
Reference: [5] Caputo, M.: Linear models of dissipation whose $Q$ is almost frequency independent. II.Geophys. J. R. Astron. Soc. 13 (1967), 529-539. Zbl 1210.65130, MR 2379269, 10.1111/j.1365-246X.1967.tb02303.x
Reference: [6] Chen, Y., Sun, Y., Liu, L.: Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions.Appl. Math. Comput. 244 (2014), 847-858. Zbl 1336.65173, MR 3250624, 10.1016/j.amc.2014.07.050
Reference: [7] Chen, X., Wang, L.: The variational iteration method for solving a neutral functional differential equation with proportional delays.Comput. Math. Appl. 59 (2010), 2696-2702. Zbl 1193.65145, MR 2607972, 10.1016/j.camwa.2010.01.037
Reference: [8] Dehestani, H., Ordokhani, Y., Razzaghi, M.: Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations.Appl. Math. Comput. 336 (2018), 433-453. Zbl 07130448, MR 3812592, 10.1016/j.amc.2018.05.017
Reference: [9] Dehestani, H., Ordokhani, Y., Razzaghi, M.: On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay.Numer. Linear Algebra Appl. 26 (2019), Article ID e2259, 29 pages. MR 4011892, 10.1002/nla.2259
Reference: [10] Dehestani, H., Ordokhani, Y., Razzaghi, M.: Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations.(to appear) in Math. Methods Appl. Sci., 18 pages. 10.1002/mma.5840
Reference: [11] Doha, E. H., Bhrawy, A. H., Baleanu, D., Hafez, R. M.: A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations.Appl. Numer. Math. 77 (2014), 43-54. Zbl 1302.65175, MR 3145364, 10.1016/j.apnum.2013.11.003
Reference: [12] Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism.IEEE Trans. Antennas Propag. 44 (1996), 554-566. Zbl 0944.78506, MR 1382017, 10.1109/8.489308
Reference: [13] Grosswald, E.: Bessel Polynomials.Lecture Notes in Mathematics 698, Springer, Berlin (1978). Zbl 0416.33008, MR 0520397, 10.1007/bfb0063135
Reference: [14] He, J.: Approximate analytical solution for seepage flow with fractional derivatives in porous media.Comput. Methods Appl. Mech. Eng. 167 (1998), 57-68. Zbl 0942.76077, MR 1665221, 10.1016/S0045-7825(98)00108-X
Reference: [15] He, J.: Nonlinear oscillation with fractional derivative and its applications.Proceedings of the International Conference on Vibrating Engineering, Dalian, 1998, pp. 288-291.
Reference: [16] Iqbal, M. A., Saeed, U., Mohyud-Din, S. T.: Modified Laguerre wavelets method for delay differential equations of fractional-order.Egyptian J. Basic Appl. Sci. 2 (2015), 50-54. 10.1016/j.ejbas.2014.10.004
Reference: [17] Jafari, H., Yousefi, S. A., Firoozjaee, M. A., Momani, S., Khalique, C. M.: Application of Legendre wavelets for solving fractional differential equations.Comput. Math. Appl. 62 (2011), 1038-1045. Zbl 1228.65253, MR 2824691, 10.1016/j.camwa.2011.04.024
Reference: [18] Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform.Int. J. Nonlinear Sci. 16 (2013), 3-11. Zbl 1394.34015, MR 3100782
Reference: [19] Kazem, S., Abbasbandy, S., Kumar, S.: Fractional-order Legendre functions for solving fractional-order differential equations.Appl. Math. Modelling 37 (2013), 5498-5510. Zbl 06929800, MR 3020667, 10.1016/j.apm.2012.10.026
Reference: [20] Kreyszig, E.: Introductory Functional Analysis with Applications.John Wiley & Sons, New York (1978). Zbl 0368.46014, MR 0467220
Reference: [21] Kumar, P., Agrawal, O. P.: An approximate method for numerical solution of fractional differential equations.Signal Process. 86 (2006), 2602-2610. Zbl 1172.94436, 10.1016/j.sigpro.2006.02.007
Reference: [22] Li, Y.: Solving a nonlinear fractional differential equation using Chebyshev wavelets.Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 2284-2292. Zbl 1222.65087, MR 2602712, 10.1016/j.cnsns.2009.09.020
Reference: [23] Li, X. Y., Wu, B. Y.: A continuous method for nonlocal functional differential equations with delayed or advanced arguments.J. Math. Anal. Appl. 409 (2014), 485-493. Zbl 1306.65225, MR 3095056, 10.1016/j.jmaa.2013.07.039
Reference: [24] Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation.J. Comput. Appl. Math. 166 (2004), 209-219. Zbl 1036.82019, MR 2057973, 10.1016/
Reference: [25] Mainardi, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics.Fractals and Fractional Calculus in Continuum Mechanics CISM Courses and Lectures 378, Springer, Vienna (1997), 291-348. Zbl 0917.73004, MR 1611587, 10.1007/978-3-7091-2664-6_7
Reference: [26] Mandelbrot, B.: Some noises with $1/f$ spectrum, a bridge between direct current and white noise.IEEE Trans. Inf. Theory 13 (1967), 289-298. Zbl 0148.40507, MR 1713511, 10.1109/TIT.1967.1053992
Reference: [27] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations.John Wiley & Sons, New York (1993). Zbl 0789.26002, MR 1219954
Reference: [28] Moaddy, K., Momani, S., Hashim, I.: The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics.Comput. Math. Appl. 61 (2011), 1209-1216. Zbl 1217.65174, MR 2770523, 10.1016/j.camwa.2010.12.072
Reference: [29] Momani, S., Al-Khaled, K.: Numerical solutions for systems of fractional differential equations by the decomposition method.Appl. Math. Comput. 162 (2005), 1351-1365. Zbl 1063.65055, MR 2113975, 10.1016/j.amc.2004.03.014
Reference: [30] Momani, S., Odibat, Z.: Numerical approach to differential equations of fractional order.J. Comput. Appl. Math. 207 (2007), 96-110. Zbl 1119.65127, MR 2332951, 10.1016/
Reference: [31] Oldham, K. B., Spanier, J.: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order.Mathematics in Science and Engineering 111, Academic Press, New York (1974). Zbl 0292.26011, MR 0361633, 10.1016/S0076-5392(09)60219-8
Reference: [32] Parand, K., Nikarya, M.: Application of Bessel functions for solving differential and integro-differential equations of the fractional order.Appl. Math. Modelling 38 (2014), 4137-4147. Zbl 06992772, MR 3233834, 10.1016/j.apm.2014.02.001
Reference: [33] Parand, K., Nikarya, M., Rad, J. A.: Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method.Celest. Mech. Dyn. Astron. 116 (2013), 97-107. MR 3061372, 10.1007/s10569-013-9477-8
Reference: [34] Petráš, I.: Fractional-order feedback control of a DC motor.J. Electr. Eng. 60 (2009), 117-128.
Reference: [35] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications.Mathematics in Science and Engineering 198, Academic Press, San Diego (1999). Zbl 0924.34008, MR 1658022
Reference: [36] Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications.Appl. Math. Modelling 40 (2016), 8087-8107. MR 3529681, 10.1016/j.apm.2016.04.026
Reference: [37] Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet.J. Comput. Appl. Math. 309 (2017), 493-510. Zbl 06626265, MR 3539800, 10.1016/
Reference: [38] Rivlin, T. J.: An Introduction to the Approximation of Functions.Dover Books on Advanced Mathematics, Dover Publications, New York (1981). Zbl 0489.41001, MR 0634509
Reference: [39] Saeed, U., Rehman, M. ur, Iqbal, M. A.: Modified Chebyshev wavelet methods for fractional delay-type equations.Appl. Math. Comput. 264 (2015), 431-442. Zbl 1410.65286, MR 3351623, 10.1016/j.amc.2015.04.113
Reference: [40] Saeedi, H., Moghadam, M. M., Mollahasani, N., Chuev, G. N.: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order.Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1154-1163. Zbl 1221.65354, MR 2736623, 10.1016/j.cnsns.2010.05.036
Reference: [41] Tohidi, E., Nik, H. Saberi: A Bessel collocation method for solving fractional optimal control problems.Appl. Math. Modelling 39 (2015), 455-465. MR 3282588, 10.1016/j.apm.2014.06.003
Reference: [42] Wang, W.-S., Li, S.-F.: On the one-leg $\theta$-methods for solving nonlinear neutral functional differential equations.Appl. Math. Comput. 193 (2007), 285-301. Zbl 1193.34156, MR 2385784, 10.1016/j.amc.2007.03.064
Reference: [43] Yin, F., Song, J., Wu, Y., Zhang, L.: Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions.Abstr. Appl. Anal. 2013 (2013), Article ID 562140, 13 pages. Zbl 1291.65310, MR 3129359, 10.1155/2013/562140
Reference: [44] Yuanlu, L., Weiwei, Z.: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations.Appl. Math. Comput. 216 (2010), 2276-2285. Zbl 1193.65114, MR 2647099, 10.1016/j.amc.2010.03.063
Reference: [45] Yüzbaşi, Ş.: Bessel Polynomial Solutions of Linear Differential, Integral and Integro-Differential Equations.M.Sc. Thesis, Graduate School of Natural and Applied Sciences, Mugla University, Kötekli (2009).
Reference: [46] Yüzbaşi, Ş.: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials.Appl. Math. Comput. 219 (2013), 6328-6343. Zbl 1280.65075, MR 3018474, 10.1016/j.amc.2012.12.006
Reference: [47] Yüzbaşi, Ş., Şahin, N., Sezer, M.: Numerical solutions of systems of linear Fredholm \hbox{integro}-differential equations with Bessel polynomial bases.Comput. Math. Appl. 61 (2011), 3079-3096. Zbl 1222.65154, MR 2799833, 10.1016/j.camwa.2011.03.097
Reference: [48] Zhang, X., Tang, B., He, Y.: Homotopy analysis method for higher-order fractional \hbox{integro}--differential equations.Comput. Math. Appl. 62 (2011), 3194-3203. Zbl 1232.65120, MR 2837752, 10.1016/j.camwa.2011.08.032

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo