Previous |  Up |  Next

Article

Title: The adaptation of the $k$-means algorithm to solving the multiple ellipses detection problem by using an initial approximation obtained by the DIRECT global optimization algorithm (English)
Author: Scitovski, Rudolf
Author: Sabo, Kristian
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 64
Issue: 6
Year: 2019
Pages: 663-678
Summary lang: English
.
Category: math
.
Summary: We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse $E$ is viewed as a Mahalanobis circle with center $S$, radius $r$, and some positive definite matrix $\Sigma $. A very efficient method for solving this problem is proposed. The method uses a modification of the $k$-means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers are determined by means of a smaller number of iterations of the DIRECT global optimization algorithm. Unlike other methods known from the literature, our method recognizes well not only ellipses with clear edges, but also ellipses with noisy edges. CPU-time necessary for running the corresponding algorithm is very short and this raises hope that, with appropriate software optimization, the algorithm could be run in real time. The method is illustrated and tested on 100 randomly generated data sets. (English)
Keyword: multiple ellipses detection problem
Keyword: globally optimal $k$-partition
Keyword: Lipschitz continuous function
Keyword: DIRECT
Keyword: $k$-means
MSC: 05E05
MSC: 65K05
MSC: 90C26
MSC: 90C27
MSC: 90C56
MSC: 90C57
idZBL: 07144732
idMR: MR4042432
DOI: 10.21136/AM.2019.0262-18
.
Date available: 2019-12-09T11:48:17Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147927
.
Reference: [1] Ahn, S. J., Rauh, W., Warnecke, H.-J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola.Pattern Recognition 34 (2001), 2283-2303. Zbl 0991.68127, 10.1016/S0031-3203(00)00152-7
Reference: [2] Akinlar, C., Topal, C.: EDCircles: A real-time circle detector with a false detection control.Pattern Recognition 46 (2013), 725-740. 10.1016/j.patcog.2012.09.020
Reference: [3] Bagirov, A. M., Ugon, J., Webb, D.: Fast modified global $k$-means algorithm for incremental cluster construction.Pattern Recognition 44 (2011), 866-876. Zbl 1213.68514, 10.1016/j.patcog.2010.10.018
Reference: [4] Finkel, D. E., Kelley, C. T.: Additive scaling and the DIRECT algorithm.J. Glob. Optim. 36 (2006), 597-608. Zbl 1142.90488, MR 2269299, 10.1007/s10898-006-9029-9
Reference: [5] Gander, W., Golub, G. H., Strebel, R.: Least-squares fitting of circles and ellipses.BIT 34 (1994), 558-578. Zbl 0817.65008, MR 1430909, 10.1007/BF01934268
Reference: [6] Grbić, R., Grahovac, D., Scitovski, R.: A method for solving the multiple ellipses detection problem.Pattern Recognition 60 (2016), 824-834. 10.1016/j.patcog.2016.06.031
Reference: [7] Grbić, R., Nyarko, E. K., Scitovski, R.: A modification of the DIRECT method for Lipschitz global optimization for a symmetric function.J. Glob. Optim. 57 (2013), 1193-1212. Zbl 1279.65076, MR 3121789, 10.1007/s10898-012-0020-3
Reference: [8] Jones, D. R., Perttunen, C. D., Stuckman, B. E.: Lipschitzian optimization without the Lipschitz constant.J. Optim. Theory Appl. 79 (1993), 157-181. Zbl 0796.49032, MR 1246501, 10.1007/BF00941892
Reference: [9] Kogan, J.: Introduction to Clustering Large and High-Dimensional Data.Cambridge University Press, Cambridge (2007). Zbl 1183.62106, MR 2297007
Reference: [10] Marošević, T., Scitovski, R.: Multiple ellipse fitting by center-based clustering.Croat. Oper. Res. Rev. (CRORR) 6 (2015), 43-53. Zbl 1359.62256, MR 3349995, 10.17535/crorr.2015.0004
Reference: [11] Morales-Esteban, A., Martínez-Álvarez, F., Scitovski, S., Scitovski, R.: A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning.Computers & Geosciences 73 (2014), 132-141. 10.1016/j.cageo.2014.09.003
Reference: [12] Moshtaghi, M., Havens, T. C., Bezdek, J. C., Park, L., Leckie, C., Rajasegarar, S., Keller, J. M., Palaniswami, M.: Clustering ellipses for anomaly detection.Pattern Recognition 44 (2011), 55-69. Zbl 1207.68301, 10.1016/j.patcog.2010.07.024
Reference: [13] Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization.SpringerBriefs in Optimization, Springer, New York (2014). Zbl 1401.90017, MR 3136389, 10.1007/978-1-4614-9093-7
Reference: [14] Prasad, D. K., Leung, M. K. H., Quek, C.: ElliFit: an unconstrained, non-iterative, least squares based geometric ellipse fitting method.Pattern Recognition 46 (2013), 1449-1465. Zbl 1264.68205, 10.1016/j.patcog.2012.11.007
Reference: [15] Sabo, K., Scitovski, R.: Interpretation and optimization of the $k$-means algorithm.Appl. Math., Praha 59 (2014), 391-406. Zbl 1340.68112, MR 3233551, 10.1007/s10492-014-0063-5
Reference: [16] Sabo, K., Scitovski, R., Vazler, I.: One-dimensional center-based $l_1$-clustering method.Optim. Lett. 7 (2013), 5-22. Zbl 1283.90034, MR 3017090, 10.1007/s11590-011-0389-9
Reference: [17] Scitovski, R.: A new global optimization method for a symmetric Lipschitz continuous function and the application to searching for a globally optimal partition of a one-dimensional set.J. Glob. Optim. 68 (2017), 713-727. Zbl 1377.65067, MR 3671698, 10.1007/s10898-017-0510-4
Reference: [18] Scitovski, R., Marošević, T.: Multiple circle detection based on center-based clustering.Pattern Recognit. Lett. 52 (2014), 9-16. 10.1016/j.patrec.2014.09.010
Reference: [19] Scitovski, R., Sabo, K.: Application of the DIRECT algorithm to searching for an optimal $k$-partition of the set $\Cal A\subset\Bbb R^n$ and its application to the multiple circle detection problem.J. Glob. Optim. 74 (2019), 63-77. Zbl 07069294, MR 3943615, 10.1007/s10898-019-00743-8
Reference: [20] Scitovski, R., Scitovski, S.: A fast partitioning algorithm and its application to earthquake investigation.Comput. Geosci. 59 (2013), 124-131. 10.1016/j.cageo.2013.06.010
Reference: [21] Späth, H.: Cluster-Formation und -Analyse. Theorie, FORTRAN-Programme und Beispiele.R. Oldenbourg Verlag, München (1983). Zbl 0536.62048
Reference: [22] Theodoridis, S., Koutroumbas, K.: Pattern Recognition.Academic Press, Amsterdam (2009). Zbl 1093.68103, 10.1016/B978-0-12-369531-4.X5000-8
.

Files

Files Size Format View
AplMat_64-2019-6_3.pdf 1.130Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo