Previous |  Up |  Next

Article

Title: On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil (English)
Author: Hanung, Umi Mahnuna
Author: Tvrdý, Milan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 4
Year: 2019
Pages: 357-372
Summary lang: English
.
Category: math
.
Summary: In this paper we explain the relationship between Stieltjes type integrals of Young, Dushnik and Kurzweil for functions with values in Banach spaces. To this aim also several new convergence theorems will be stated and proved. (English)
Keyword: Kurzweil integral
Keyword: Young integral
Keyword: Dushnik integral
Keyword: Kurzweil-Stieltjes integral
Keyword: Young-Stieltjes integral
Keyword: Dushnik-Stieltjes integral
Keyword: convergence theorem
MSC: 26A36
MSC: 26A39
MSC: 26A42
idZBL: 07217260
idMR: MR4047342
DOI: 10.21136/MB.2019.0015-19
.
Date available: 2019-12-09T11:51:59Z
Last updated: 2020-08-14
Stable URL: http://hdl.handle.net/10338.dmlcz/147933
.
Reference: [1] Ashordia, M.: On the Opial type criterion for the well-posedness of the Cauchy problem for linear systems of generalized ordinary differential equations.Math. Bohem. 141 (2016), 183-215. Zbl 06587862, MR 3499784, 10.21136/mb.2016.15
Reference: [2] Dushnik, B.: On the Stieltjes Integral.Thesis. University of Michigan, Ann Arbor (1931). MR 2936614
Reference: [3] Federson, M., Bianconi, R., Barbanti, L.: Linear Volterra integral equations as the limit of discrete systems.Acta Math. Appl. Sin., Engl. Ser. 20 (2004), 623-640. Zbl 1067.45005, MR 2173638, 10.1007/s10255-004-0200-0
Reference: [4] Federson, M., Táboas, P.: Topological dynamics of retarded functional differential equations.J. Differ. Equations 195 (2003), 313-331. Zbl 1054.34102, MR 2016815, 10.1016/s0022-0396(03)00061-5
Reference: [5] Hildebrandt, T. H.: On systems of linear differentio-Stieltjes-integral equations.Ill. J. Math. 3 (1959), 352-373. Zbl 0088.31101, MR 0105600, 10.1215/ijm/1255455257
Reference: [6] Hildebrandt, T. H.: Introduction to the Theory of Integration.Pure and Applied Mathematics 13. Academic Press, New York (1963). Zbl 0112.28302, MR 0154957, 10.1016/s0079-8169(08)x6120-3
Reference: [7] Hönig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints.North-Holland Mathematics Studies 16. Notas de Mathematica (56). North-Holland Publishing Company, Amsterdam; American Elsevier Publishing Company, New York (1975). Zbl 0307.45002, MR 0499969
Reference: [8] Hönig, C. S.: Volterra-Stieltjes integral equations.Functional Differential Equations and Bifurcation. Proc. Conf., Inst. Ciênc. Mat. São Carlos, 1979 Lecture Notes in Math. 799. Springer, Berlin (1980), 173-216 A. F. Izé. Zbl 0436.45021, MR 0585488, 10.1007/bfb0089315
Reference: [9] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (1957), 418-449. Zbl 0090.30002, MR 0111875, 10.21136/CMJ.1957.100258
Reference: [10] Kurzweil, J.: Generalized Ordinary Differential Equations. Not Absolutely Continuous Solutions.Series in Real Analysis 11. World Scientific, Hackensack (2012). Zbl 1248.34001, MR 2906899, 10.1142/9789814324038
Reference: [11] MacNerney, J. S.: An integration-by-parts formula.Bull. Am. Math. Soc. 69 (1963), 803-805. Zbl 0129.27004, MR 0153809, 10.1090/s0002-9904-1963-11039-3
Reference: [12] Meng, G., Zhang, M.: Dependence of solutions and eigenvalues of measure differential equations on measures.J. Differ. Equations 254 (2013), 2196-2232. Zbl 1267.34014, MR 3007109, 10.1016/j.jde.2012.12.001
Reference: [13] Monteiro, G. A., Slavík, A., Tvrdý, M.: Kurzweil-Stieltjes Integral. Theory and Applications.Series in Real Analysis 15. World Scientific, Hackensack (2018). Zbl 06758513, MR 3839599, 10.1142/9432
Reference: [14] Monteiro, G. A., Tvrdý, M.: On Kurzweil-Stieltjes integral in a Banach space.Math. Bohem. 137 (2012), 365-381. Zbl 1274.26014, MR 3058269, 10.21136/MB.2012.142992
Reference: [15] Monteiro, G. A., Tvrdý, M.: Generalized linear differential equations in a Banach space: Continuous dependence on a parameter.Discrete Contin. Dyn. Syst. 33 (2013), 283-303. Zbl 1268.45009, MR 2972960, 10.3934/dcds.2013.33.283
Reference: [16] Saks, S.: Theory of the Integral.With two additional notes by Stefan Banach. Dover Publications, Mineola (1964). Zbl 1196.28001, MR 0167578
Reference: [17] Schwabik, Š.: On a modified sum integral of Stieltjes type.Čas. Pěst. Mat. 98 (1973), 274-277. Zbl 0266.26007, MR 0322114
Reference: [18] Schwabik, Š.: On the relation between Young's and Kurzweil's concept of Stieltjes integral.Čas. Pěst. Mat. 98 (1973), 237-251. Zbl 0266.26006, MR 0322113
Reference: [19] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5. World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241, 10.1142/1875
Reference: [20] Schwabik, Š.: Abstract Perron-Stieltjes integral.Math. Bohem. 121 (1996), 425-447. Zbl 0879.28021, MR 1428144, 10.21136/MB.1996.126036
Reference: [21] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces.Math. Bohem. 124 (1999), 433-457. Zbl 0937.34047, MR 1722877, 10.21136/MB.1999.125994
Reference: [22] Schwabik, Š.: Linear Stieltjes integral equations in Banach spaces. II. Operator valued solutions.Math. Bohem. 125 (2000), 431-454. Zbl 0974.34057, MR 1802292, 10.21136/MB.2000.126273
Reference: [23] Schwabik, Š.: A note on integration by parts for abstract Perron-Stieltjes integrals.Math. Bohem. 126 (2001), 613-629. Zbl 0980.26005, MR 1970264, 10.21136/MB.2001.134198
Reference: [24] Schwabik, Š., Tvrdý, M., Vejvoda, O.: Differential and Integral Equations. Boundary Value Problems and Adjoints.D. Reidel Publishing Company, Dordrecht; Academia (Publishing House of the Czechoslovak Academy of Sciences), Praha (1979). Zbl 0417.45001, MR 0542283
Reference: [25] Schwabik, Š., Ye, G.: Topics in Banach Space Integration.Series in Real Analysis 10. World Scientific, Hackensack (2005). Zbl 1088.28008, MR 2167754, 10.1142/5905
Reference: [26] Young, W. H.: On integration with respect to a function of bounded variation.Proc. Lond. Math. Soc. (2) 13 (1914), 109-150. Zbl 45.0446.04, MR 1577495, 10.1112/plms/s2-13.1.109
.

Files

Files Size Format View
MathBohem_144-2019-4_3.pdf 318.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo