Previous |  Up |  Next

Article

Title: Bound sets and two-point boundary value problems for second order differential systems (English)
Author: Mawhin, Jean
Author: Szymańska-Dębowska, Katarzyna
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 144
Issue: 4
Year: 2019
Pages: 373-392
Summary lang: English
.
Category: math
.
Summary: The solvability of second order differential systems with the classical separated or periodic boundary conditions is considered. The proofs use special classes of curvature bound sets or bound sets together with the simplest version of the Leray-Schauder continuation theorem. The special cases where the bound set is a ball, a parallelotope or a bounded convex set are considered. (English)
Keyword: two-point boundary value problem
Keyword: curvature bound set
Keyword: Leray-Schauder theorem
Keyword: Bernstein-Hartman condition
MSC: 34B15
MSC: 47H11
idZBL: 07217261
idMR: MR4047343
DOI: 10.21136/MB.2019.0014-19
.
Date available: 2019-12-09T11:52:37Z
Last updated: 2020-08-14
Stable URL: http://hdl.handle.net/10338.dmlcz/147934
.
Reference: [1] Amster, P., Haddad, J.: A Hartman-Nagumo type condition for a class of contractible domains.Topol. Methods Nonlinear Anal. 41 (2013), 287-304. Zbl 1306.34033, MR 3114309
Reference: [2] Bass, R. W.: On non-linear repulsive forces.Contributions to the Theory of Nonlinear Oscillations, Volume IV. Annals of Mathematics Studies 41. Princeton University Press, Princeton (1958), 201-211 S. Lefschetz. Zbl 0083.31405, MR 0100704, 10.1515/9781400881758-011
Reference: [3] Bebernes, J. W.: A simple alternative problem for finding periodic solutions of second order ordinary differential systems.Proc. Am. Math. Soc. 42 (1974), 121-127. Zbl 0286.34055, MR 0330597, 10.2307/2039687
Reference: [4] Bernstein, S. N.: Sur les équations du calcul des variations.Ann. Sci. Éc. Norm. Supér., Sér. III. 29 (1912), 431-485 French \99999JFM99999 43.0460.01. MR 1509153, 10.24033/asens.651
Reference: [5] Coster, C. De, Habets, P.: Two-Point Boundary Value Problems: Lower and Upper Solutions.Mathematics in Science and Engineering 205. Elsevier, Amsterdam (2006). Zbl 1330.34009, MR 2225284, 10.1016/s0076-5392(06)x8055-4
Reference: [6] Fabry, C.: Nagumo conditions for systems of second-order differential equations.J. Math. Anal. Appl. 107 (1985), 132-143. Zbl 0604.34002, MR 0786017, 10.1016/0022-247x(85)90358-0
Reference: [7] Fewster-Young, N.: A singular Hartman inequality for existence of solutions to nonlinear systems of singular, second order boundary value problems.Int. J. Differ. Equ. Appl. 14 (2015), 195-228. Zbl 1337.34024, MR 3621238, 10.12732/ijdea.v14i3.2215
Reference: [8] Fewster-Young, N.: A priori bounds and existence results for singular boundary value problems.Electron. J. Qual. Theory Differ. Equ. (2016), 1-15. Zbl 1363.34067, MR 3487646, 10.14232/ejqtde.2016.1.17
Reference: [9] Frigon, M.: Boundary and periodic value problems for systems of nonlinear second order differential equations.Topol. Methods Nonlinear Anal. 1 (1993), 259-274. Zbl 0790.34022, MR 1233095, 10.12775/tmna.1993.019
Reference: [10] Frigon, M.: Boundary and periodic value problems for systems of differential equations under Bernstein-Nagumo growth condition.Differ. Integral Equ. 8 (1995), 1789-1804. Zbl 0831.34021, MR 1347980
Reference: [11] Gaines, R. E., Mawhin, J. L.: Coincidence Degree, and Nonlinear Differential Equations.Lecture Notes in Mathematics 568. Springer, Cham (1977). Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [12] Hartman, P.: On boundary value problems for systems of ordinary, nonlinear, second order differential equations.Trans. Am. Math. Soc. 96 (1960), 493-509. Zbl 0098.06101, MR 0124553, 10.2307/1993537
Reference: [13] Hartman, P.: Ordinary Differential Equations.John Wiley & Sons, New York (1964). Zbl 0125.32102, MR 0171038
Reference: [14] Heinz, E.: On certain nonlinear elliptic differential equations and univalent mappings.J. Anal. Math. 5 (1956/1957), 197-272. Zbl 0085.08701, MR 0136852, 10.1007/BF02937346
Reference: [15] Henderson, J., Sheng, Q., Tisdell, C. C.: Constructive existence results for solutions to systems of boundary value problems via general Lyapunov methods.Differ. Equ. Appl. 9 (2017), 57-68. Zbl 1365.34043, MR 3610874, 10.7153/dea-09-05
Reference: [16] Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals.Grundlehren der mathematischen Wissenschaften 305. Springer, Berlin (1993). Zbl 0795.49001, MR 1261420, 10.1007/978-3-662-02796-7
Reference: [17] Knobloch, H.-W.: On the existence of periodic solutions for second order vector differential equations.J. Differ. Equations 9 (1971), 67-85. Zbl 0211.11801, MR 0277824, 10.1016/0022-0396(70)90154-3
Reference: [18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles.Ann. Sci. Éc. Norm. Supér., Sér. III. 51 (1934), 45-78 French. Zbl 0009.07301, MR 1509338, 10.24033/asens.836
Reference: [19] Mawhin, J.: Topological Degree Methods in Nonlinear Boundary Value Problems.CBMS Regional Conference Series in Mathematics 40. AMS, Providence (1979). Zbl 0414.34025, MR 0525202, 10.1090/cbms/040
Reference: [20] Mawhin, J.: Variations on Poincaré-Miranda's theorem.Adv. Nonlinear Stud. 13 (2013), 209-217. Zbl 1278.55004, MR 3058216, 10.1515/ans-2013-0112
Reference: [21] Mawhin, J., Szymańska-Dębowska, K.: Convex sets and second order systems with nonlocal boundary conditions at resonance.Proc. Am. Math. Soc. 145 (2017), 2023-2032. Zbl 1393.34035, MR 3611317, 10.1090/proc/13569
Reference: [22] Nagumo, M.: Über die Differentialgleichung $y'' = f(t, y, y')$.Proc. Phys.-Math. Soc. Japan, III. Ser. 19 (1937), 861-866 German. Zbl 0017.30801
Reference: [23] Opial, Z.: Sur la limitation des dérivées des solutions bornées d'un système d'équations différentielles du second ordre.Ann. Polon. Math. 10 (1961), 73-79 French. Zbl 0097.29401, MR 0126020, 10.4064/ap-10-1-73-79
Reference: [24] Rouche, N., Mawhin, J.: Équations différentielles ordinaires. Tome I: Théorie générale. Tome II: Stabilité et solutions périodiques.Masson et Cie, Paris French (1973). Zbl 0289.34001, MR 0481182
Reference: [25] Schmitt, K., Thompson, R.: Boundary value problems for infinite systems of second-order differential equations.J. Differ. Equations 18 (1975), 277-295. Zbl 0302.34081, MR 0374594, 10.1016/0022-0396(75)90063-7
Reference: [26] Szymańska-Dębowska, K.: On a generalization of the Miranda Theorem and its application to boundary value problems.J. Differ. Equations 258 (2015), 2686-2700. Zbl 1336.47056, MR 3312640, 10.1016/j.jde.2014.12.022
Reference: [27] Taddei, V.: Two-points boundary value problems for Carathéodory second order equations.Arch. Math., Brno 44 (2008), 93-103. Zbl 1212.34039, MR 2432846
Reference: [28] Taddei, V., Zanolin, F.: Bound sets and two-point boundary value problems for second order differential equations.Georgian Math. J. 14 (2007), 385-402. Zbl 1133.34013, MR 2341286, 10.1515/GMJ.2007.385
Reference: [29] Thorpe, J. A.: Elementary Topics in Differential Geometry.Undergraduate Texts in Mathematics. Springer, New York (1979). Zbl 0404.53001, MR 0528129, 10.1007/978-1-4612-6153-7
Reference: [30] Tisdell, C. C., Tan, L. H.: On vector boundary value problems without growth restrictions.JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 137, 10 pages \99999MR99999 2191606 \filbreak. Zbl 1097.34018, MR 2191606
.

Files

Files Size Format View
MathBohem_144-2019-4_4.pdf 357.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo