Previous |  Up |  Next

Article

Title: Tracking control design for nonlinear polynomial systems via augmented error system approach and block pulse functions technique (English)
Author: Iben Warrad, Bassem
Author: Bouafoura, Mohamed Karim
Author: Benhadj Braiek, Naceur
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 831-851
Summary lang: English
.
Category: math
.
Summary: In this paper, tracking control design for a class of nonlinear polynomial systems is investigated by augmented error system approach and block pulse functions technique. The proposed method is based on the projection of the close loop augmented system and the associated linear reference model that it should follow over a basis of block pulse functions. The main advantage of using this tool is that it allows to transform the analytical differential calculus into an algebraic one relatively easy to solve. The developments presented have led to the formulation of a linear system of algebraic equations depending only on parameters of the feedback control. Once the control gains are determined by solving the latter optimization problem in least square sense, the practical stability of the closed loop augmented system is checked through given conditions. A double inverted pendulums benchmark is used to validate the proposed tracking control method. (English)
Keyword: tracking control
Keyword: nonlinear polynomial systems
Keyword: augmented error system approach
Keyword: block pulse functions
Keyword: practical stability
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 07177919
idMR: MR4055579
DOI: 10.14736/kyb-2019-5-0831
.
Date available: 2020-01-06T11:22:04Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147954
.
Reference: [1] Balatif, O., Rachik, M., Labriji, E., Rachik, Z.: Optimal control problem for a class of bilinear systems via block pulse functions..J. Math. Control Inform. 34 (2017), 973-986. MR 3746086, 10.1093/imamci/dnw005
Reference: [2] Belhaouane, M. M., Braiek, N. Benhadj: Design of stabilizing control for synchronous machines via polynomial modelling and linear matrix inequalities approach..Int. J. Control, Automat. Systems 9 (2011), 425-436. 10.1007/s12555-011-0301-5
Reference: [3] Braiek, N. Benhadj: Feedback stabilization and stability domain estimation of nonlinear systems..J. Franklin Inst. 332 (1995), 183-193. MR 1367190, 10.1016/0016-0032(95)00038-x
Reference: [4] Brewer, J. W.: Kronecker products and matrix calculus in systems theory..IEEE Trans. Circuits Systems 25 (1978), 772-781. MR 0510703, 10.1109/tcs.1978.1084534
Reference: [5] Chen, W., Ge, Sh. S., Wu, J., Gong, M.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori..IEEE Tran. Neural Networks Learning Systems 26 (2015), 1842-1854. MR 3453124, 10.1109/tnnls.2014.2357451
Reference: [6] Chen, M., Wu, Q. X., Cui, R. X.: Terminal sliding mode tracking control for a class of SISO uncertain nonlinear systems..ISA Trans. 52 (2013), 198-206. 10.1016/j.isatra.2012.09.009
Reference: [7] Cui, Y., Zhang, H., Wang, Y., Gao, W.: Adaptive control for a class of uncertain strict-feedback nonlinear systems based on a generalized fuzzy hyperbolic model..Fuzzy Sets Systems 302 (2016), 52-64. MR 3543818, 10.1016/j.fss.2015.11.015
Reference: [8] Cui, Y., Zhang, H., Qu, Q., Luo, C.: Synthetic adaptive fuzzy tracking control for MIMO uncertain nonlinear systems with disturbance observer..Neurocomputing 249 (2017), 191-201. 10.1016/j.neucom.2017.03.064
Reference: [9] Deb, A., Roychoudhury, S., Sarkar, G.: Analysis and Identification of Time Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions. Theory and Algorithms with MATLAB..Studies in Systems, Decision and Control, 2016. MR 3727125, 10.1007/978-3-319-26684-8
Reference: [10] Deb, A., Sarkar, G., Sengupta, A.: Triangular Orthogonal Functions for the Analysis of Continuous Time Systems..Anthem Press, 2012. MR 3586384, 10.7135/upo9781843318118
Reference: [11] Ghorbel, H., Hajjaji, A. El, Souissi., M., Chaabane, M.: Robust tracking control for TS fuzzy systems with unmeasurable premise variables: Application to tank system..J. Dynamic Systems, Measurement Control 136 (2014), 4. 10.1115/1.4026467
Reference: [12] Ginoya, D., Shendge, P. D., Phadke, S. B.: Disturbance observer based sliding mode control of nonlinear mismatched uncertain systems..Comm. Nonlin. Sci. Numer. Simul. 26 (2015), 98-107. MR 3332038, 10.1016/j.cnsns.2015.02.008
Reference: [13] Gruyitch, L. T.: Nonlinear Systems Tracking..CRC Press. Taylor and Francis Group, 2016. 10.1201/b19258
Reference: [14] Hwang, C., Shih, Y. P.: Optimal control of delay systems via block pulse functions..J. Optim. Theory Appl. 45 (1985), 101-112. MR 0778160, 10.1007/bf00940816
Reference: [15] Jarzebowska, E.: Model-Based Tracking Control of Nonlinear Systems..CRC Press. Taylor and Francis Group, 2012. MR 2964364, 10.1201/b12262
Reference: [16] Jemai, W. J., Jerbi, H., Abdelkrim, M. N.: Nonlinear state feedback design for continuous polynomial systems..Int. J. Control Automat. Systems 9 (2011), 566-573. 10.1007/s12555-011-0317-x
Reference: [17] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems..World Scientific Publishing, 1990. MR 1089428, 10.1142/1192
Reference: [18] Marzban, H. R.: Parameter identification of linear multi-delay systems via a hybrid of block-pulse functions and Taylor's polynomials..Int. J. Control 90 (2016), 504-518. MR 3604170, 10.1080/00207179.2016.1186288
Reference: [19] Han, Y. Qun: Adaptive tracking control of nonlinear systems with dynamic uncertainties using neural network..Int. J. Systems Sci. 49 (2018), 1391-1402. MR 3825710, 10.1080/00207721.2018.1453955
Reference: [20] Rehan, M., Hong, K. Shik, Ge, Sh. Sam: Stabilization and tracking control for a class of nonlinear systems..Nonlinear Analysis: Real World Appl. 12 (2011), 1786-1796. MR 2781896, 10.1016/j.nonrwa.2010.11.011
Reference: [21] Rotella, F., Dauphin-Tanguy, G.: Nonlinear systems: Identification and optimal control..Int. J. Control 48 (1988), 525-544. MR 0957420, 10.1080/00207178808906195
Reference: [22] Shao, X., Wang, H.: A Novel Method of Robust Trajectory Linearization Control Based on Disturbance Rejection..Math. Problems Engrg. 2014 (2014), 1-10. MR 3200860, 10.1155/2014/129247
Reference: [23] Tang, Y., Li, N., Liu, M., Lu, Y., Wang, W.: Identification of fractional-order systems with time delays using block pulse functions..Mech. Systems Signal Process. 91 (2017), 382-394. 10.1016/j.ymssp.2017.01.008
Reference: [24] Tong, S., Wang, T., Li, H. X.: Fuzzy robust tracking control for uncertain nonlinear systems..Int. J. Approx. Reason. 30 (2002), 73-90. MR 1906629, 10.1016/s0888-613x(02)00061-0
Reference: [25] Wang, H., Shi, P., Li, H., Zhou, Q.: Adaptive neural tracking control for a class of nonlinear systems with dynamic uncertainties..IEEE Trans. Cybernet. 47 (2017), 3075-3087. MR 3410700, 10.1109/tcyb.2016.2607166
Reference: [26] Warrad, B. Iben, Bouafoura, M. K., Braiek, N. Benhadj: Tracking control synthesis of nonlinear polynomial systems..In: 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Colmar 2015.
Reference: [27] Warrad, B. Iben, Bouafoura, M. K., Braiek, N. Benhadj: Static output tracking control for non-linear polynomial time-delay systems via block-pulse functions..J. Chinese Inst. Engineers 41 (2018), 194-205. 10.1080/02533839.2018.1459849
Reference: [28] Xingling, S., Honglun, W.: Trajectory Linearization Control Based Output Tracking Method for Nonlinear Uncertain System Using Linear Extended State Observer..Asian J. Control 18 (2016), 316-327. MR 3458911, 10.1002/asjc.1053
Reference: [29] Xu, Y., Zhang, J., Liao, F.: Augmented error system approach to control design for a class of neutral systems..Advances Diff. Equations (2015), 1-17. MR 3393013, 10.1186/s13662-015-0596-2
Reference: [30] Yu, Y., Zhong, Y. Sh.: Semiglobal Robust Backstepping Output Tracking for Strict-feedback Form Systems with Nonlinear Uncertainty..Int. J. Control Automat. Systems 9 (2011), 366-375. 10.1007/s12555-011-0219-y
Reference: [31] Yu, Y., Zhong, Y.: Semi-global robust output tracking for non-linear uncertain systems in strict-feedback form..IET Control Theory Appl. 6 (2012), 751-759. MR 2952999, 10.1186/s13662-015-0596-2
Reference: [32] Zhang, H., Li, C., Liao, X.: Stability analysis and h infinity controller design of fuzzy large-scale systems based on piecewise Lyapunov functions..IEEE Trans. Syst. Man Cybernet. 36 (2006), 685-698. 10.1109/tsmcb.2005.860133
.

Files

Files Size Format View
Kybernetika_55-2019-5_5.pdf 784.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo