Previous |  Up |  Next

Article

Title: A multi-subpopulation bat optimization algorithm for economic dispatch problem with non-essential demand response (English)
Author: Shen, Yanjun
Author: Yang, Bo
Author: Huang, Xiongfeng
Author: Zhang, Yujiao
Author: Tan, Chao
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 5
Year: 2019
Pages: 809-830
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose a new economic dispatch model with random wind power, demand response and carbon tax. The specific feature of the demand response model is that the consumer's electricity demand is divided into two parts: necessary part and non-essential part. The part of the consumer's participation in the demand response is the non-essential part of the electricity consumption. The optimal dispatch objective is to obtain the minimum total cost (fuel cost, random wind power cost and emission cost) and the maximum consumer's non-essential demand response benefit while satisfying some given constraints. In order to solve the optimal dispatch objective, a multi-subpopulation bat optimization algorithm (MSPBA) is proposed by using different search strategies. Finally, a case of an economic dispatch model is given to verify the feasibility and effectiveness of the established mathematical model and proposed algorithm. The economic dispatch model includes three thermal generators, two wind turbines and two consumers. The simulation results show that the proposed model can reduce the consumer's electricity demand, reduce fuel cost and reduce the impact on the environment while considering random wind energy, non-essential demand response and carbon tax. In addition, the superiority of the proposed algorithm is verified by comparing with the optimization results of CPLEX+YALMIP toolbox for MATLAB, BA, DBA and ILSSIWBA. (English)
Keyword: economic dispatch
Keyword: non-essential demand response
Keyword: random wind power
Keyword: bat algorithm
Keyword: multi-subpopulation
MSC: 90Bxx
idZBL: Zbl 07177918
DOI: 10.14736/kyb-2019-5-0809
.
Date available: 2020-01-06T11:21:47Z
Last updated: 2020-11-23
Stable URL: http://hdl.handle.net/10338.dmlcz/147953
.
Reference: [1] Abdelaziz, A. Y., Ali, E. S., Elazim, S. M. A.: Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems..Energy 101 (2016), 506-518. 10.1016/j.energy.2016.02.041
Reference: [2] Chakri, A., Khelif, R., Benouaret, M., al., et: New directional bat algorithm for continuous optimization problems..Expert Systems Appl. 69 (2017), 159-175. 10.1016/j.eswa.2016.10.050
Reference: [3] Chen, C. L., Vempati, V. S., Aljaber, N.: An application of genetic algorithms for flow shop problems..Europ. J. Oper. Res. 80 (1995), 389-396. 10.1016/0377-2217(93)e0228-p
Reference: [4] Cheng, C. T., Liao, S. L., Tang, Z. T., al., et: Comparison of particle swarm optimization and dynamic programming for large scale hydro unit load dispatch..Energy Conversion Management 50 (2009), 3007-3014. 10.1016/j.enconman.2009.07.020
Reference: [5] Chen, F., Zhou, J., Wang, C., al., et: A modified gravitational search algorithm based on a non-dominated sorting genetic approach for hydro-thermal-wind economic emission dispatching..Energy 121 (2017), 276-291. 10.1016/j.energy.2017.01.010
Reference: [6] Das, S., Suganthan, P. N.: Differential evolution: a Survey of the State-of-the-art..IEEE Trans. Evolutionary Comput. 15 (2011), 4-31. MR 3032010, 10.1109/tevc.2010.2059031
Reference: [7] Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents..IEEE Trans. Systems, Man, Cybernetics, Part B (Cybernetics) 26 (1996), 29-41. 10.1109/3477.484436
Reference: [8] Fahrioglu, M., Alvarado, F. L.: Designing incentive compatible contracts for effective demand management..IEEE Trans. Power Systems 15 (2000), 1255-1260. 10.1109/59.898098
Reference: [9] Fahrioglu, M., Alvarado, F. L.: Using utility information to calibrate customer demand management behavior models..IEEE Trans. Power Systems 16 (2001), 317-322. 10.1109/59.918305
Reference: [10] Gan, C., Cao, W., Wu, M., al., et: A new bat algorithm based on iterative local search and stochastic inertia weight..Expert Systems Appl. 104 (2018), 202-212. 10.1016/j.eswa.2018.03.015
Reference: [11] Gandomi, A. H., Yang, X. S.: Chaotic bat algorithm..J. Comput. Sci. 5 (2014), 224-232. MR 3173261, 10.1016/j.jocs.2013.10.002
Reference: [12] Gandomi, A. H., Yang, X. S., Alavi, A. H., al., et: Bat algorithm for constrained optimization tasks..Neural Computing Appl. 22 (2013), 1239-1255. 10.1007/s00521-012-1028-9
Reference: [13] Ghasemi, M., Ghavidel, S., Ghanbarian, M. M., al., et: Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm..Energy 78 (2014), 276-289. 10.1016/j.energy.2014.10.007
Reference: [14] Guo, Y., Tong, L., Wu, W., al., et: Coordinated Multi-area Economic Dispatch via Critical Region Projection..IEEE Trans. Power Systems 32 (2017), 3736-3746. 10.1109/tpwrs.2017.2655442
Reference: [15] Guo, F., Wen, C., Mao, J., al., et: Distributed economic dispatch for dmart grids with random wind power..IEEE Trans. Smart Grid 7 (2016), 1572-1583. 10.1109/tsg.2015.2434831
Reference: [16] He, X. S., Ding, W. J., Yang, X. S.: Bat algorithm based on simulated annealing and Gaussian perturbations..Neural Comput. Appl. 25 (2014), 459-468. 10.1007/s00521-013-1518-4
Reference: [17] Hetzer, J., Yu, D. C., Bhattarai, K.: An economic dispatch model incorporating wind power..IEEE Trans. Energy Conversion 23 (2008), 603-611. 10.1109/tec.2007.914171
Reference: [18] Jabr, R., Coonick, A. H., Cory, B. J.: A homogeneous linear programming algorithm for the security constrained economic dispatch problem..IEEE Trans. Power Syst. 15 (2000), 930-936. 10.1109/59.871715
Reference: [19] Jeddi, B., Vahidinasab, V.: A modified harmony search method for environmental/economic load dispatch of real-world power systems..Energy Conversion Management 78 (2014), 661-675. 10.1016/j.enconman.2013.11.027
Reference: [20] Ji, M., Tang, H.: Application of chaos in simulated annealing..Chaos Solitons Fractals 21 (2004), 933-941. MR 2076025, 10.1016/j.chaos.2003.12.032
Reference: [21] Kennedy, J., Eberhart, R.: Particle swarm optimization..In: Proc. ICNN'95 - International Conference on Neural Networks, Perth 1995, 4, pp. 1942-1948. 10.1109/icnn.1995.488968
Reference: [22] Lee, K. Y., Park, Y. M., Ortiz, J. L.: Fuel-cost minimisation for both real-and reactive-power dispatches..IEE Proceedings. Part C: Generation, Transmission and Distribution. 131 (1984), 85-93. 10.1049/ip-c.1984.0012
Reference: [23] Li, M., Hou, J., Niu, Y., al., et: Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants..In: International Conference on Control and Automation, IEEE 2016, pp. 830-835. 10.1109/icca.2016.7505381
Reference: [24] Liang, H., Liu, Y., Shen, Y., al., et: A hybrid bat algorithm for economic dispatch with random wind power..IEEE Trans. Power Syst. 33 (2018), 5052-5061. 10.1109/tpwrs.2018.2812711
Reference: [25] Liu, X., Xu, W.: Minimum emission dispatch constrained by stochastic wind power availability and cost..IEEE Trans. Power Systems 25 (2010), 1705-1713. 10.1109/tpwrs.2010.2042085
Reference: [26] al., I. Mazhoud et: Particle swarm optimization for solving engineering problems: A new constraint-handling mechanism..Engrg. Appl. Artif. Intell. 26 (2013), 1263-1273. 10.1016/j.engappai.2013.02.002
Reference: [27] Nwulu, N. I., Fahrioglu, M.: A neural network model for optimal demand management contract design..In: International Conference on Environment and Electrical Engineering, IEEE 2011, pp. 1-4. 10.1109/eeeic.2011.5874776
Reference: [28] Nwulu, N. I., Fahrioglu, M.: Power system demand management contract design: A comparison between game theory and artificial neural networks..Int. Rev. Modell. Simul. 4 (2011), 104-112.
Reference: [29] Nwulu, N. I., Xia, X.: Optimal dispatch for a microgrid incorporating renewables and demand response..Renewable Energy 101 (2017), 16-28. 10.1016/j.renene.2016.08.026
Reference: [30] Park, J. B., Lee, K. S., Shin, J. R., al., et: A particle swarm optimization for economic dispatch with nonsmooth cost functions..IEEE Trans. Power Syst. 20 (2005), 34-42. 10.1109/tpwrs.2004.831275
Reference: [31] Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing..J. Comput. Physics 226 (2007), 1830-1844. MR 2356396, 10.1109/tpwrs.2004.831275
Reference: [32] Sen, T., Mathur, H. D.: A new approach to solve Economic Dispatch problem using a Hybrid ACO/ABC/HS optimization algorithm..Int. J. Electr. Power Energy Systems 78 (2016), 735-744. 10.1016/j.ijepes.2015.11.121
Reference: [33] Walters, D. C., Sheble, G. B.: Genetic algorithm solution of economic dispatch with valve point loading..IEEE Trans. Power Systems 8 (1993), 1325-1332. 10.1109/59.260861
Reference: [34] Wood, A. J., Wollenberg, B. F.: Power generation operation and control. Second edition..Fuel Energy Abstracts 37 (1996), 195. 10.1016/0140-6701(96)88715-7
Reference: [35] Yang, X. S.: A new metaheuristic bat-inspired algorithm..Comput. Knowledge Technol. 284 (2010), 65-74. 10.1007/978-3-642-12538-6_6
Reference: [36] Yang, X. S., Deb, S.: Engineering optimisation by cuckoo search..Int. J. Math. Modell. Numer. Optim. 1 (2010), 330-343. 10.1504/ijmmno.2010.035430
Reference: [37] Yang, X., Gandomi, A. H.: Bat algorithm: a novel approach for global engineering optimization..Engrg. Computations 29 (2012), 464-483. MR 3206205, 10.1108/02644401211235834
Reference: [38] Yang, H., Yi, J., Zhao, J., al., et: Extreme learning machine based genetic algorithm and its application in power system economic dispatch..Neurocomputing 102 (2013), 154-162. 10.1016/j.neucom.2011.12.054
Reference: [39] Yao, F., Dong, Z. Y., Meng, K., al., et: Quantum-inspired particle swarm optimization for power system operations considering wind power uncertainty and carbon tax in Australia..IEEE Trans. Industr. Inform. 8 (2012), 880-888. 10.1109/tii.2012.2210431
.

Files

Files Size Format View
Kybernetika_55-2019-5_4.pdf 562.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo