Previous |  Up |  Next

Article

Title: Construction methods for implications on bounded lattices (English)
Author: Kesicioğlu, M. Nesibe
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 641-667
Summary lang: English
.
Category: math
.
Summary: In this paper, the ordinal sum construction methods of implications on bounded lattices are studied. Necessary and sufficient conditions of an ordinal sum for obtaining an implication are presented. New ordinal sum construction methods on bounded lattices which generate implications are discussed. Some basic properties of ordinal sum implications are studied. (English)
Keyword: ordinal sum
Keyword: implication
Keyword: bounded lattice
MSC: 03B52
MSC: 03E72
idZBL: Zbl 07177908
idMR: MR4043540
DOI: 10.14736/kyb-2019-4-0641
.
Date available: 2020-01-10T14:21:35Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147961
.
Reference: [1] Baczyński, M., Drygaś, P., Król, A., Mesiar, R.: New types of ordinal sum of fuzzy implications..In: Fuzzy systems (FUZZ-IEEE), 2017 IEEE International Conference, 2017. 10.1109/fuzz-ieee.2017.8015700
Reference: [2] Baczyński, M., Jayaram, B.: Fuzzy Implications..Studies in Fuzziness and Soft Computing 231, Springer, Berlin, Heidelberg, 2008. Zbl 1293.03012, MR 2428086
Reference: [3] Birkhoff, G.: Lattice Theory. Third edition..Providence, 1967. MR 0227053, 10.1090/coll/025
Reference: [4] Çaylı, G. D.: On a new class of t-norms and t-conorms on bounded lattices..Fuzzy Sets and Systems 132 (2018), 129-143. MR 3732255, 10.1016/j.fss.2017.07.015
Reference: [5] Drygaś, P., Król, A.: Various kinds of fuzzy implications..In: Novel Developments in Uncertainty Represent, and Processing (K. T. Atanassov et al., eds.), Advences in Intelligent Systems and Computing 401, Springer Internat. Publ. AG, 2016, pp. 37-49. 10.1007/978-3-319-26211-6\_4
Reference: [6] Drygaś, P., Król, A.: Generating fuzzy implications by ordinal sums..Tatra Mt. Math. Publ. 66 (2016), 39-50. MR 3591073, 10.1515/tmmp-2016-0018
Reference: [7] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives..Inform. Sci. 36 (1985), 85-121. Zbl 0582.03040, MR 0813766, 10.1016/0020-0255(85)90027-1
Reference: [8] Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, Part 1: inference with possibility distributions..Fuzzy Sets and Systems 40 (1991), 143-202. MR 1103660, 10.1016/0165-0114(91)90050-z
Reference: [9] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms..Inform. Sci. 330 (2016), 315-327. 10.1016/j.ins.2015.10.019
Reference: [10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Systems 30 (2015), 807-817. 10.1002/int.21713
Reference: [11] Fodor, J., Rudas, I. J.: Migrative t-norms with respect to continuous ordinal sums..Inform. Sci. 181 (2011), 4860-4866. MR 2825865, 10.1016/j.ins.2011.05.014
Reference: [12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, 2009. Zbl 1206.68299, MR 2538324, 10.1109/sisy.2008.4664901
Reference: [13] Kesicioğlu, M. N., Mesiar, R.: Ordering based on implications..Inform. Sci. 276 (2014), 377-386. MR 3206505, 10.1016/j.ins.2013.12.047
Reference: [14] Klement, E. P., (eds.), R. Mesiar: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms..Elsevier, Amsterdam 2005. MR 2165231
Reference: [15] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [16] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford..Semigroup Forum 65 (2002), 71-82. MR 1903555, 10.1007/s002330010127
Reference: [17] Ma, Z., Wu, W. M.: Logical operators on complete lattices..Inform. Sci. 55 (1991), 77-97. Zbl 0741.03010, MR 1080449, 10.1016/0020-0255(91)90007-h
Reference: [18] Mas, M., Monserrat, M., Torrens, J.: The law of importation for discrete implications..Inform. Sci. 179 (2009), 4208-4218. MR 2722378, 10.1016/j.ins.2009.08.028
Reference: [19] Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions..IEEE Trans. Fuzzy Syst. 15 (2007), 1107-1121. 10.1109/tfuzz.2007.896304
Reference: [20] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices..Fuzzy Sets and Systems 202 (2012), 75-88. MR 2934787, 10.1016/j.fss.2012.03.002
Reference: [21] Mesiar, R., Mesiarová, A.: Residual implications and left-continuous t-norms which are ordinal sum of semigroups..Fuzzy Sets and Systems 143 (2004), 47-57. MR 2060272, 10.1016/j.fss.2003.06.008
Reference: [22] Mesiarová-Zemánková, A.: Ordinal sum construction for uninorms and generalized uninorms..Int. J. Approx. Reason. 76 (2016), 1-17. MR 3521044, 10.1016/j.ijar.2016.04.007
Reference: [23] Mesiarová-Zemánková, A.: Ordinal sums of representable uninorms..Fuzzy Sets and Systems 308 (2017), 42-53. MR 3579153, 10.1016/j.fss.2016.07.006
Reference: [24] Riera, J. V., Torrens, J.: Residual implications on the set of discrete fuzzy numbers..Inform. Sci. 247 (2013), 131-143. MR 3085948, 10.1016/j.ins.2013.06.008
Reference: [25] Saminger, S.: On ordinal sum of triangular norms on bounded lattices..Fuzzy Sets and Systems 157 (2006), 1403-1416. MR 2226983, 10.1016/j.fss.2005.12.021
Reference: [26] Su, Y., Xie, A., Liu, H.: On ordinal sum implications..Inform. Sci. 293 (2015), 251-262. MR 3273566, 10.1016/j.ins.2014.09.021
Reference: [27] Xie, A., Liu, H., Zhang, F., Li, C.: On the distributivity of fuzzy implications over continuous Archimedean t-conorms and continuous t-conorms given as ordinal sums..Fuzzy Sets and Systems 205 (2012), 76-100. MR 2960108, 10.1016/j.fss.2012.01.009
Reference: [28] Yager, R. R.: Aggregation operators and fuzzy systems modelling..Fuzzy Sets and Systems 67 (1994), 129-145. MR 1302575, 10.1016/0165-0114(94)90082-5
Reference: [29] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets and Systems 80 (1996), 111-120. Zbl 0871.04007, MR 1389951, 10.1016/0165-0114(95)00133-6
.

Files

Files Size Format View
Kybernetika_55-2019-4_3.pdf 553.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo