Previous |  Up |  Next

Article

Title: On application of Rothe's fixed point theorem to study the controllability of fractional semilinear systems with delays (English)
Author: Sikora, Beata
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 55
Issue: 4
Year: 2019
Pages: 675-689
Summary lang: English
.
Category: math
.
Summary: The paper presents finite-dimensional dynamical control systems described by semilinear fractional-order state equations with multiple delays in the control and nonlinear function $f$. The relative controllability of the presented semilinear system is discussed. Rothe's fixed point theorem is applied to study the controllability of the fractional-order semilinear system. A control that steers the semilinear system from an initial complete state to a final state at time $t>0$ is presented. A numerical example is provided to illustrate the obtained theoretical results and a practical example is given to show a possible application of the study. (English)
Keyword: fractional systems
Keyword: semilinear control systems
Keyword: Rothe's fixed point theorem
Keyword: delays in control
Keyword: pseudo-transition matrix
Keyword: the Caputo derivative
MSC: 34G20
MSC: 93B05
MSC: 93C05
MSC: 93C10
idZBL: Zbl 07177910
idMR: MR4043542
DOI: 10.14736/kyb-2019-4-0675
.
Date available: 2020-01-10T14:22:08Z
Last updated: 2020-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147963
.
Reference: [1] Babiarz, A., Czornik, A., Niezabitowski, M.: Output controllability of the discrete-time linear switched systems..Nonlinear Analysis: Hybrid Systems 21 (2016), 1-10. MR 3500067, 10.1016/j.nahs.2015.12.004
Reference: [2] Babiarz, A., Niezabitowski, M.: Controllability Problem of Fractional Neutral Systems: A Survey..Math. Problems Engrg. 4715861 (2017), 1-15. MR 3603402, 10.1155/2017/4715861
Reference: [3] Balachandran, K., Kokila, J.: On the controllability of fractional dynamical systems..Int. J. Appl. Math. Comput. Sci. 22 (2012), 523-531. MR 3025259, 10.2478/v10006-012-0039-0
Reference: [4] Balachandran, K., Zhou, Y., Kokila, J.: Relative controllability of fractional dynamical systems with delays in control..Commun. Nonlinear Sci. Numer. Simul. 17 Zbl 1248.93022, MR 2913988
Reference: [5] Balachandran, K., Park, J. Y., Trujillo, J. J.: Controllability of nonlinear fractional dynamical systems..Nonlinear Analysis 75 (2012), 1919-1926. MR 2870885, 10.1016/j.na.2011.09.042
Reference: [6] Balachandran, K., Kokila, J.: Constrained controllability of fractional dynamical systems..Numer. Functional Anal. Optim. 34 (2013), 1187-1205. MR 3175614, 10.1080/01630563.2013.778868
Reference: [7] Balachandran, K., Kokila, J.: Controllability of fractional dynamical systems with prescribed controls..IET Control Theory Appl.7 (2013), 1242-1248. MR 3175614, 10.1049/iet-cta.2012.0049
Reference: [8] Balachandran, K.: Controllability of Nonlinear Fractional Delay Dynamical Systems with Multiple Delays in Control.Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2016), 321-332. MR 3638562, 10.1007/978-3-319-45474-0_29
Reference: [9] Chen, Y. Q., Ahn, H. S., Xue, D.: Robust controllability of interval fractional order linear time invariant systems..Signal Processes 86 (2006), 2794-2802. 10.1016/j.sigpro.2006.02.021
Reference: [10] Deng, W., Li, C., Lu, J.: Stability analysis of linear fractional differential systems with multiple time delays..Nonlinear Dynamics 48 (2007), 409-416. MR 2312588, 10.1007/s11071-006-9094-0
Reference: [11] Isac, G.: On Rothe's fixed point theorem in a general topological vector space..An. St. Univ. Ovidius Constanta 12 (2004), 127-134. MR 2209122
Reference: [12] Iturriaga, E., Leiva, H.: A characterization of semilinear surjective operators and applications to control problems..Appl. Math. 1 (2010), 265-273. 10.4236/am.2010.14033
Reference: [13] Kaczorek, T.: Selected Problems of Fractional Systems Theory..Lect. Notes Control Inform. Sci. 2011. Zbl 1221.93002, MR 2798773, 10.1007/978-3-642-20502-6
Reference: [14] Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits..Studies in Systems, Decision and Control, 2015. Zbl 1354.93001, MR 3497539, 10.1007/978-3-319-11361-6
Reference: [15] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations..North-Holland Mathematics Studies, 2006. Zbl 1092.45003, MR 2218073, 10.1016/s0304-0208(06)x8001-5
Reference: [16] Klamka, J.: Controllability of Dynamical Systems..Kluwer Academic Publishers, 1991. Zbl 0818.93002, MR 1134783
Reference: [17] Klamka, J.: Controllability and minimum energy control problem of fractional discrete-time systems..New Trends Nanotechology and Fractional Calculus Applications, Springer, 2010. MR 2642623, 10.1007/978-90-481-3293-5_45
Reference: [18] Klamka, J.: Local controllability of fractional discrete-time semilinear systems..Acta Mechanica at Automatica 5 (2011), 55-58.
Reference: [19] Klamka, J.: Controllability of dynamical systems. A survey..Bull. Pol. Ac.: Tech. Sci. 61 (2013), 335-342. MR 1134783, 10.2478/bpasts-2013-0031
Reference: [20] Klamka, J., Czornik, A., Niezabitowski, M., Babiarz, A.: Controllability and minimum energy control of linear fractional discrete-time infinite-dimensional systems..In: Proc. 11th IEEE International Conference on Control and Automation, Taiwan 2014, pp. 1210-1214. MR 3728359, 10.1109/icca.2014.6871094
Reference: [21] Klamka, J., Czornik, A.: Controllability problem of positive discrete fractional systems with constant delay..In: Proc. 17th International Carpathian Control Conference 2016, pp. 324-328. 10.1109/carpathiancc.2016.7501117
Reference: [22] Klamka, J., Sikora, B.: New controllability Criteria for Fractional Systems with Varying Delays..Lect. Notes Electr. Engrg. Theory and Applications of Non-integer Order Systems 407 (2017), 333-344. 10.1007/978-3-319-45474-0_30
Reference: [23] Leiva, H.: Rothe's fixed point theorem and controllability of semilinear nonautonomous systems..Systems Control Lett. 67 (2014), 14-18. MR 3183375, 10.1016/j.sysconle.2014.01.008
Reference: [24] Luyben, W. L.: Process Modelling, Simulation and Control for Chemical Engineers..McGraw-Hill, Chemical Engineering Series, International Editions, 1990. 10.1002/pol.1973.130110416
Reference: [25] Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Calculus..Villey 1993. MR 1219954
Reference: [26] Monje, A., Chen, Y., Viagre, B. M., Xue, D., Feliu, V.: Fractional-order Systems and Controls. Fundamentals and Applications..Springer-Verlag 2010. MR 3012798, 10.1007/978-1-84996-335-0
Reference: [27] Nirmala, R. J., Balachandran, K., Rodriguez-Germa, L., Trujillo, J. J.: Controllability of nonlinear fractional delay dynamical systems..Reports Math. Physics 77 (2016), 87-104. MR 3461800, 10.1016/s0034-4877(16)30007-6
Reference: [28] Odibat, Z. M.: Analytic study on linear systems of fractional differential equations..Computers Math. Appl. 59 (2010), 1171-1183. MR 2579481, 10.1016/j.camwa.2009.06.035
Reference: [29] Oldham, K. B., Spanier, J.: The Fractional Calculus..Academic Press 1974. Zbl 0292.26011, MR 0361633
Reference: [30] Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications..In: Mathematics in Science and Engineering, Academic Press 1999. Zbl 0924.34008, MR 1658022
Reference: [31] Sabatier, J., Agrawal, O. P., Machado, J. A Tenreiro: Advances in Fractional Calculus..In: Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag 2007. MR 2432163, 10.1007/978-1-4020-6042-7
Reference: [32] Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems..Computers Math. Appl. 62 (2011), 1451-1459. MR 2824732, 10.1016/j.camwa.2011.04.040
Reference: [33] Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S. M.: Approximate controllability of nonlinear fractional dynamical systems..Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498-3508. MR 3081379, 10.1016/j.cnsns.2013.05.015
Reference: [34] Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives: Theory and Applications..Gordan and Breach Science Publishers 1993. Zbl 0818.26003, MR 1347689
Reference: [35] Sikora, B.: Controllability of time-delay fractional systems with and without constraints..IET Control Theory Appl. 10 (2016), 320-327. MR 3468656, 10.1049/iet-cta.2015.0935
Reference: [36] Sikora, B.: Controllability criteria for time-delay fractional systems with a retarded state..Int. J. Appl. Math. Computer Sci. 26 (2016), 521-531. Zbl 1347.93057, MR 3560625, 10.1515/amcs-2016-0036
Reference: [37] Sikora, B., Klamka, J.: Constrained controllability of fractional linear systems with delays in control..Systems Control Lett. 106 (2017), 9-15. MR 3681007, 10.1016/j.sysconle.2017.04.013
Reference: [38] Sikora, B., Klamka, J.: Cone-type constrained relative controllability of semilinear fractional systems with delays..Kybernetika 53 (2017), 370-381. MR 3661357, 10.14736/kyb-2017-2-0370
Reference: [39] Smart, J. D. R.: Fixed Points Theorems..Cambridge University Press, 1974. MR 0467717
Reference: [40] Trzasko, W.: Reachability and controllability of positive fractional discrete-time systems with delay..J. Automat. Mobile Robotics Intell. Systems 2 (2008), 43-47.
Reference: [41] Wang, J., Zhou, Y.: Complete controllability of fractional evolution systems..Commun. Nonlinear Sci. Numer. Simulat. 17 (2012), 4346-4355. MR 2930338, 10.1016/j.cnsns.2012.02.029
Reference: [42] Wei, J.: The controllability of fractional control systems with control delay..Computers Math. Appl. 64 (2012), 3153-3159. Zbl 1268.93027, MR 2989343, 10.1016/j.camwa.2012.02.065
.

Files

Files Size Format View
Kybernetika_55-2019-4_5.pdf 489.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo