Previous |  Up |  Next

Article

Keywords:
ordered category; (strongly) order-solid functor; weighted (co)limit; ordered algebra
Summary:
Order-enriched solid functors, as presented in this paper in two versions, enjoy many of the strong properties of their ordinary counterparts, including the transfer of the existence of weighted (co)limits from their codomains to their domains. The ordinary version of the notion first appeared in Trnková's work on automata theory of the 1970s and was subsequently studied by others under various names, before being put into a general enriched context by C. Anghel. Our focus in this paper is on differentiating the order-enriched notion from the ordinary one, mostly in terms of the functor's behaviour with respect to specific weighted (co)limits, and on the presentation of examples, which include functors of general varieties of ordered algebras and special ones, such as ordered vector spaces.
References:
[1] Adámek J., Herrlich H., Strecker G. E.: Abstract and Concrete Categories. Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, New York, 1990. MR 1051419
[2] Adámek J., Rosický J., Vitale E. M.: Algebraic Theories. Cambridge Tracts in Mathematics, 184, Cambridge University Press, Cambridge, 2011. MR 2757312
[3] Adámek J., Sousa L.: KZ-monadic categories and their logic. Theory Appl. Categ. 32 (2017), paper no. 10, 338–379. MR 3633707
[4] Adámek J., Sousa L., Velebil J.: Kan injectivity in order-enriched categories. Math. Structures Comput. Sci. 25 (2015), no. 1, 6–45. DOI 10.1017/S0960129514000024 | MR 3283679
[5] Anghel C.: Factorizations and Initiality in Enriched Categories. Doctoral Dissertation, Fernuniversität, Hagen, 1987.
[6] Anghel C.: Semi-initial and semi-final $V$-functors. Comm. Algebra 18 (1990), no. 1, 135–181. DOI 10.1080/00927879008823905 | MR 1037900
[7] Anghel C.: Lifting properties of $V$-functors. Comm. Algebra 18 (1990), no. 1, 183–192. DOI 10.1080/00927879008823906 | MR 1037901
[8] Antoine P.: Étude élémentaire des catégories d'ensembles structurés. Bull. Soc. Math. Belg. 18 (1966), 142–164, 387–414 (French). MR 0200321
[9] Börger R., Tholen W.: Cantors Diagonalprinzip für Kategorien. Math. Z. 160 (1978), no. 2, 135–138 (German). DOI 10.1007/BF01214264 | MR 0498772
[10] Börger R., Tholen W.: Total categories and solid functors. Canad. J. Math. 42 (1990), no. 2, 213–229. DOI 10.4153/CJM-1990-012-x | MR 1051726
[11] Brümmer G. C. L.: A Categorical Study of Initiality in Uniform Topology. Ph.D. Thesis, University of Cape Town, Cape Town, 1971.
[12] Carvalho M., Sousa L.: Order-preserving reflectors and injectivity. Topology Appl. 158 (2011), no. 17, 2408–2422. DOI 10.1016/j.topol.2010.12.016 | MR 2838390
[13] Carvalho M., Sousa L.: On Kan-injectivity of locales and spaces. Appl. Categorical Structures 25 (2017), no. 1, 83–104. DOI 10.1007/s10485-015-9413-z | MR 3606496
[14] Čech E.: Topological Spaces. Academia, Prague, 1966.
[15] Dubuc E.: Adjoint triangles. Reports of the Midwest Category Seminar, Springer, Berlin, 1968, pages 69–91. MR 0233864
[16] Fritz T.: Resource convertibility and ordered commutative monoids. Math. Structures Comput. Sci. 27 (2017), no. 6, 850–938. DOI 10.1017/S0960129515000444 | MR 3683631
[17] Herrlich H.: Topological functors. General Topology and Appl. 4 (1974), 125–142. DOI 10.1016/0016-660X(74)90016-6 | MR 0343226
[18] Hoffmann R.-E.: Die kategorielle Auffassung der Initial- und Finaltopologie. Doctoral Dissertation, Ruhr-Universität, Bochum, 1972 (German).
[19] Hoffmann R.-E.: Semi-identifying lifts and a generalization of the dual theorem for topological functors. Math. Nachr. 74 (1976), 295–307. DOI 10.1002/mana.3210740124 | MR 0428256
[20] Hofmann D. (ed.), Seal G. J. (ed.), Tholen W. (ed.): Monoidal Topology. Encyclopedia of Mathematics and Its Applications, 153, Cambridge University Press, Cambridge, 2014. MR 3307673
[21] Hofmann D., Sousa L.: Aspects of algebraic algebras. Log. Methods Comput. Sci. 13 (2017), no. 3, paper no. 4, 25 pages. MR 3673245
[22] Hong Y. H.: Studies on Categories of Universal Topological Algebras. Ph.D. Thesis, McMaster University, Hamilton, 1974. MR 2702868
[23] Hušek M.: $S$-categories. Comment. Math. Univ. Carolinae 5 (1964), 37–46. MR 0174027
[24] Jameson G.: Ordered Linear Spaces. Lecture Notes in Mathematics, 141, Springer, Berlin, 1970. MR 0438077
[25] Kelly G. M.: Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Note Series, 64, Cambridge University Press, Cambridge, 1982. MR 0651714 | Zbl 1086.18001
[26] Kurz A., Velebil J.: Quasivarieties and varieties of ordered algebras: regularity and exactness. Math. Structures Comput. Sci. 27 (2017), no. 7, 1153–1194. DOI 10.1017/S096012951500050X | MR 3705669
[27] Lawvere F. W.: Functorial Semantics of Algebraic Theories. Ph.D. Thesis, Columbia University, New York, 1963. MR 2939398
[28] Linton F. E. J.: Some aspects of equational categories. Proc. of the Conf. Categorical Algebra, La Jolla, 1965, Springer, New York, 1966, pages 84–94. MR 0209335
[29] MacLane S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, 5, Springer, Berlin, 1971. MR 0354798 | Zbl 0705.18001
[30] Manes E. G.: A pullback theorem for triples in a lattice fibering with applications to algebra and analysis. Algebra Universalis 2 (1972), 7–17. DOI 10.1007/BF02945002 | MR 0311741
[31] Picado J., Pultr A.: Frames and Locales: Topology without Points. Frontiers in Mathematics, Birkhäuser/Springer Basel AG, Basel, 2012. MR 2868166
[32] Roberts J. E.: A characterization of initial functors. J. Algebra 8 (1968), 181–193. DOI 10.1016/0021-8693(68)90044-6 | MR 0224674
[33] Schaefer H. H.: Topological Vector Spaces. Graduate Texts in Mathematics, 3, Springer, New York, 1971. MR 0342978 | Zbl 0983.46002
[34] Shukla W.: On Top Categories. Ph.D. Thesis, Indian Institute of Technology, Kanpur, 1971.
[35] Sousa L.: Solid hulls of concrete categories. Appl. Categ. Structures 3 (1995), no. 2, 105–118. DOI 10.1007/BF00877631 | MR 1329186
[36] Sousa L.: A calculus of lax fractions. J. Pure Appl. Algebra 221 (2017), no. 2, 422–448. DOI 10.1016/j.jpaa.2016.07.002 | MR 3545270
[37] Street R., Tholen W., Wischnewsky M., Wolff H.: Semitopological functors. III. Lifting of monads and adjoint functors. J. Pure Appl. Algebra 16 (1980), no. 3, 299–314. DOI 10.1016/0022-4049(80)90035-3 | MR 0558494
[38] Taylor J. C.: Weak families of maps. Canad. Math. Bull. 8 (1965), 771–781. DOI 10.4153/CMB-1965-057-7 | MR 0212069
[39] Tholen W.: $M$-functors. Nordwestdeutsches Kategorienseminar, Tagung, Bremen, 1976, Math.-Arbeitspapiere, No. 7, Teil A: Math. Forschungspapiere, Universität Bremen, Bremen, 1976, pages 178–185. MR 0486037
[40] Tholen W.: On Wyler's taut lift theorem. General Topology and Appl. 8 (1978), no. 2, 197–206. DOI 10.1016/0016-660X(78)90050-8 | MR 0480669
[41] Tholen W.: Semitopological functors I. J. Pure Appl. Algebra 15 (1979), no. 1, 53–73. DOI 10.1016/0022-4049(79)90040-9 | MR 0532963
[42] Tholen W.: Note on total categories. Bull. Austral. Math. Soc. 21 (1980), no. 2, 169–173. DOI 10.1017/S0004972700005992 | MR 0574836
[43] Tholen W., Wischnewsky M. B.: Semitopological functors. II. External characterizations. J. Pure Appl. Algebra 15 (1979), no. 1, 75–92. DOI 10.1016/0022-4049(79)90041-0 | MR 0532964
[44] Trnková V.: Automata and categories. Mathematical Foundations of Computer Science 1975, Fourth Sympos., Mariánské Lázně, 1975, Lecture Notes in Computer Science, 32, Springer, Berlin, 1975, 138–152. DOI 10.1007/3-540-07389-2_188 | MR 0393175
[45] Wischnewsky M. B.: Partielle Algebren in Initialkategorien. Math. Z. 127 (1972), 83–91 (German). DOI 10.1007/BF01110107 | MR 0308238
[46] Wischnewsky M. B.: A lifting theorem for right adjoints. Cahiers Topologie Géom. Differentielle 19 (1978), no. 2, 155–168. MR 0528344
[47] Wyler O.: On the categories of general topology and topological algebra. Arch. Math. (Basel) 22 (1971), 7–17. DOI 10.1007/BF01222531 | MR 0287563
[48] Wyler O.: Top categories and categorical topology. General Topology and Appl. 1 (1971), no. 1, 17–28. DOI 10.1016/0016-660X(71)90106-1 | MR 0282324
Partner of
EuDML logo