Previous |  Up |  Next

Article

Title: Vector product and composition algebras in braided monoidal additive categories (English)
Author: Street, Ross
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 60
Issue: 4
Year: 2019
Pages: 581-604
Summary lang: English
.
Category: math
.
Summary: This is an account of some work of Markus Rost and his students Dominik Boos and Susanne Maurer. It concerns the possible dimensions for composition (also called Hurwitz) algebras. We adapt the work to the braided monoidal setting. (English)
Keyword: string diagram
Keyword: vector product
Keyword: bilinear form
Keyword: braiding
Keyword: monoidal dual
MSC: 11E20
MSC: 15A03
MSC: 17A75
MSC: 18D10
idZBL: Zbl 07177891
idMR: MR4061364
DOI: 10.14712/1213-7243.2019.024
.
Date available: 2020-02-10T16:50:45Z
Last updated: 2022-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147978
.
Reference: [1] Baez J. C.: The octonions.Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 45–205. Zbl 1026.17001, MR 1886087
Reference: [2] Boos D.: Ein tensorkategorieller Zugang zum Satz von Hurwitz.Diplomarbeit ETH Zürich, Zürich, 1998 (Deutsch).
Reference: [3] Hurwitz A.: Über die Komposition der quadratischen Formen von beliebig vielen Variablen.Nachrichten Ges. der Wiss. Göttingen (1898), 309–316; in: Mathematische Werke. Bd. II, Zahlentheorie, Algebra und Geometrie, Birkhäuser, Basel, 1963, 565–571 (Deutsch). MR 0154778
Reference: [4] Hurwitz A.: Über die Komposition der quadratischen Formen.Math. Ann. 88 (1922), no. 1–2, 1–25 (Deutsch). MR 1512117, 10.1007/BF01448439
Reference: [5] Joyal A., Street R.: The geometry of tensor calculus I.Adv. Math. 88 (1991), no. 1, 55–112. MR 1113284, 10.1016/0001-8708(91)90003-P
Reference: [6] Joyal A., Street R.: Braided tensor categories.Adv. Math. 102 (1993), no. 1, 20–78. MR 1250465, 10.1006/aima.1993.1055
Reference: [7] Mac Lane S.: Categories for the Working Mathematician.Graduate Texts in Mathematics, 5, Springer, New York, 1971. Zbl 0906.18001, MR 1712872, 10.1007/978-1-4612-9839-7
Reference: [8] Maurer S.: Vektorproduktalgebren.Diplomarbeit Universität Regensburg, Regensburg, 1998 (Deutsch).
Reference: [9] Rost M.: On the dimension of a composition algebra.Doc. Math. 1 (1996), no. 10, 209–214. MR 1397790
Reference: [10] Westbury B. W.: Hurwitz' theorem on composition algebras.available at arXiv:1011.6197 [math.RA] (2010), 33 pages.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_60-2019-4_11.pdf 365.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo